mirror of https://github.com/coqui-ai/TTS.git
add stop loss
This commit is contained in:
parent
d4da61b78e
commit
cc9bfe96af
34
train.py
34
train.py
|
@ -62,11 +62,12 @@ else:
|
||||||
print(" > Priority freq. is disabled.")
|
print(" > Priority freq. is disabled.")
|
||||||
|
|
||||||
|
|
||||||
def train(model, criterion, data_loader, optimizer, epoch):
|
def train(model, criterion, criterion_st, data_loader, optimizer, epoch):
|
||||||
model = model.train()
|
model = model.train()
|
||||||
epoch_time = 0
|
epoch_time = 0
|
||||||
avg_linear_loss = 0
|
avg_linear_loss = 0
|
||||||
avg_mel_loss = 0
|
avg_mel_loss = 0
|
||||||
|
avg_stop_loss = 0
|
||||||
avg_attn_loss = 0
|
avg_attn_loss = 0
|
||||||
|
|
||||||
print(" | > Epoch {}/{}".format(epoch, c.epochs))
|
print(" | > Epoch {}/{}".format(epoch, c.epochs))
|
||||||
|
@ -108,18 +109,19 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
mk = mk_decay(c.mk, c.epochs, epoch)
|
mk = mk_decay(c.mk, c.epochs, epoch)
|
||||||
|
|
||||||
# forward pass
|
# forward pass
|
||||||
mel_output, linear_output, alignments =\
|
mel_output, linear_output, alignments, stop_tokens =\
|
||||||
model.forward(text_input, mel_spec)
|
model.forward(text_input, mel_spec)
|
||||||
|
|
||||||
# loss computation
|
# loss computation
|
||||||
mel_loss = criterion(mel_output, mel_spec, mel_lengths)
|
mel_loss = criterion(mel_output, mel_spec, mel_lengths)
|
||||||
linear_loss = criterion(linear_output, linear_spec, mel_lengths)
|
linear_loss = criterion(linear_output, linear_spec, mel_lengths)
|
||||||
|
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||||
if c.priority_freq:
|
if c.priority_freq:
|
||||||
linear_loss = 0.5 * linear_loss\
|
linear_loss = 0.5 * linear_loss\
|
||||||
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
||||||
linear_spec[:, :, :n_priority_freq],
|
linear_spec[:, :, :n_priority_freq],
|
||||||
mel_lengths)
|
mel_lengths)
|
||||||
loss = mel_loss + linear_loss
|
loss = mel_loss + linear_loss + stop_loss
|
||||||
if c.mk > 0.0:
|
if c.mk > 0.0:
|
||||||
attention_loss = criterion(alignments, M, mel_lengths)
|
attention_loss = criterion(alignments, M, mel_lengths)
|
||||||
loss += mk * attention_loss
|
loss += mk * attention_loss
|
||||||
|
@ -141,12 +143,14 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
progbar_display['total_loss'] = loss.item()
|
progbar_display['total_loss'] = loss.item()
|
||||||
progbar_display['linear_loss'] = linear_loss.item()
|
progbar_display['linear_loss'] = linear_loss.item()
|
||||||
progbar_display['mel_loss'] = mel_loss.item()
|
progbar_display['mel_loss'] = mel_loss.item()
|
||||||
|
progbar_display['stop_loss'] = stop_loss.item()
|
||||||
progbar_display['grad_norm'] = grad_norm.item()
|
progbar_display['grad_norm'] = grad_norm.item()
|
||||||
|
|
||||||
# update
|
# update
|
||||||
progbar.update(num_iter+1, values=list(progbar_display.items()))
|
progbar.update(num_iter+1, values=list(progbar_display.items()))
|
||||||
avg_linear_loss += linear_loss.item()
|
avg_linear_loss += linear_loss.item()
|
||||||
avg_mel_loss += mel_loss.item()
|
avg_mel_loss += mel_loss.item()
|
||||||
|
avg_stop_loss += st_loss.item()
|
||||||
|
|
||||||
# Plot Training Iter Stats
|
# Plot Training Iter Stats
|
||||||
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
|
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
|
||||||
|
@ -193,11 +197,13 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
|
|
||||||
avg_linear_loss /= (num_iter + 1)
|
avg_linear_loss /= (num_iter + 1)
|
||||||
avg_mel_loss /= (num_iter + 1)
|
avg_mel_loss /= (num_iter + 1)
|
||||||
avg_total_loss = avg_mel_loss + avg_linear_loss
|
avg_stop_loss /= (num_iter + 1)
|
||||||
|
avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss
|
||||||
|
|
||||||
# Plot Training Epoch Stats
|
# Plot Training Epoch Stats
|
||||||
tb.add_scalar('TrainEpochLoss/TotalLoss', avg_total_loss, current_step)
|
tb.add_scalar('TrainEpochLoss/TotalLoss', avg_total_loss, current_step)
|
||||||
tb.add_scalar('TrainEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
tb.add_scalar('TrainEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
||||||
|
tb.add_scalar('TrainEpochLoss/StopLoss', avg_stop_loss, current_step)
|
||||||
tb.add_scalar('TrainEpochLoss/MelLoss', avg_mel_loss, current_step)
|
tb.add_scalar('TrainEpochLoss/MelLoss', avg_mel_loss, current_step)
|
||||||
if c.mk > 0:
|
if c.mk > 0:
|
||||||
avg_attn_loss /= (num_iter + 1)
|
avg_attn_loss /= (num_iter + 1)
|
||||||
|
@ -208,11 +214,12 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
return avg_linear_loss, current_step
|
return avg_linear_loss, current_step
|
||||||
|
|
||||||
|
|
||||||
def evaluate(model, criterion, data_loader, current_step):
|
def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
epoch_time = 0
|
epoch_time = 0
|
||||||
avg_linear_loss = 0
|
avg_linear_loss = 0
|
||||||
avg_mel_loss = 0
|
avg_mel_loss = 0
|
||||||
|
avg_stop_loss = 0
|
||||||
|
|
||||||
print("\n | > Validation")
|
print("\n | > Validation")
|
||||||
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
||||||
|
@ -236,18 +243,19 @@ def evaluate(model, criterion, data_loader, current_step):
|
||||||
linear_spec = linear_spec.cuda()
|
linear_spec = linear_spec.cuda()
|
||||||
|
|
||||||
# forward pass
|
# forward pass
|
||||||
mel_output, linear_output, alignments =\
|
mel_output, linear_output, alignments, stop_tokens =\
|
||||||
model.forward(text_input, mel_spec)
|
model.forward(text_input, mel_spec)
|
||||||
|
|
||||||
# loss computation
|
# loss computation
|
||||||
mel_loss = criterion(mel_output, mel_spec, mel_lengths)
|
mel_loss = criterion(mel_output, mel_spec, mel_lengths)
|
||||||
linear_loss = criterion(linear_output, linear_spec, mel_lengths)
|
linear_loss = criterion(linear_output, linear_spec, mel_lengths)
|
||||||
|
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||||
if c.priority_freq:
|
if c.priority_freq:
|
||||||
linear_loss = 0.5 * linear_loss\
|
linear_loss = 0.5 * linear_loss\
|
||||||
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
|
||||||
linear_spec[:, :, :n_priority_freq],
|
linear_spec[:, :, :n_priority_freq],
|
||||||
mel_lengths)
|
mel_lengths)
|
||||||
loss = mel_loss + linear_loss
|
loss = mel_loss + linear_loss + stop_loss
|
||||||
|
|
||||||
step_time = time.time() - start_time
|
step_time = time.time() - start_time
|
||||||
epoch_time += step_time
|
epoch_time += step_time
|
||||||
|
@ -256,11 +264,13 @@ def evaluate(model, criterion, data_loader, current_step):
|
||||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||||
('linear_loss',
|
('linear_loss',
|
||||||
linear_loss.item()),
|
linear_loss.item()),
|
||||||
|
('stop_loss', stop_loss.item()),
|
||||||
('mel_loss', mel_loss.item())])
|
('mel_loss', mel_loss.item())])
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
|
|
||||||
avg_linear_loss += linear_loss.item()
|
avg_linear_loss += linear_loss.item()
|
||||||
avg_mel_loss += mel_loss.item()
|
avg_mel_loss += mel_loss.item()
|
||||||
|
avg_stop_loss += stop_loss.item()
|
||||||
|
|
||||||
# Diagnostic visualizations
|
# Diagnostic visualizations
|
||||||
idx = np.random.randint(mel_spec.shape[0])
|
idx = np.random.randint(mel_spec.shape[0])
|
||||||
|
@ -292,12 +302,14 @@ def evaluate(model, criterion, data_loader, current_step):
|
||||||
# compute average losses
|
# compute average losses
|
||||||
avg_linear_loss /= (num_iter + 1)
|
avg_linear_loss /= (num_iter + 1)
|
||||||
avg_mel_loss /= (num_iter + 1)
|
avg_mel_loss /= (num_iter + 1)
|
||||||
avg_total_loss = avg_mel_loss + avg_linear_loss
|
avg_stop_loss /= (num_iter + 1)
|
||||||
|
avg_total_loss = avg_mel_loss + avg_linear_loss + stop_loss
|
||||||
|
|
||||||
# Plot Learning Stats
|
# Plot Learning Stats
|
||||||
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
|
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
|
||||||
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
|
||||||
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
|
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
|
||||||
|
tb.add_scalar('ValEpochLoss/Stop_loss', avg_stop_loss, current_step)
|
||||||
return avg_linear_loss
|
return avg_linear_loss
|
||||||
|
|
||||||
|
|
||||||
|
@ -355,8 +367,10 @@ def main(args):
|
||||||
|
|
||||||
if use_cuda:
|
if use_cuda:
|
||||||
criterion = L1LossMasked().cuda()
|
criterion = L1LossMasked().cuda()
|
||||||
|
criterion_st = nn.BCELoss().cuda()
|
||||||
else:
|
else:
|
||||||
criterion = L1LossMasked()
|
criterion = L1LossMasked()
|
||||||
|
criterion_st = nn.BCELoss()
|
||||||
|
|
||||||
if args.restore_path:
|
if args.restore_path:
|
||||||
checkpoint = torch.load(args.restore_path)
|
checkpoint = torch.load(args.restore_path)
|
||||||
|
@ -392,8 +406,8 @@ def main(args):
|
||||||
|
|
||||||
for epoch in range(0, c.epochs):
|
for epoch in range(0, c.epochs):
|
||||||
train_loss, current_step = train(
|
train_loss, current_step = train(
|
||||||
model, criterion, train_loader, optimizer, epoch)
|
model, criterion, criterion_st, train_loader, optimizer, epoch)
|
||||||
val_loss = evaluate(model, criterion, val_loader, current_step)
|
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
|
||||||
best_loss = save_best_model(model, optimizer, val_loss,
|
best_loss = save_best_model(model, optimizer, val_loss,
|
||||||
best_loss, OUT_PATH,
|
best_loss, OUT_PATH,
|
||||||
current_step, epoch)
|
current_step, epoch)
|
||||||
|
|
Loading…
Reference in New Issue