mirror of https://github.com/coqui-ai/TTS.git
linter fixes #2
This commit is contained in:
parent
4d3e1e9d9a
commit
cd69da4868
|
@ -479,7 +479,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
optimizer_gen = getattr(torch.optim, c.optimizer)
|
optimizer_gen = getattr(torch.optim, c.optimizer)
|
||||||
optimizer_gen = optimizer_gen(lr=c.lr_gen, **c.optimizer_params)
|
optimizer_gen = optimizer_gen(lr=c.lr_gen, **c.optimizer_params)
|
||||||
optimizer_disc = getattr(torch.optim, c.optimizer)
|
optimizer_disc = getattr(torch.optim, c.optimizer)
|
||||||
optimizer_disc= optimizer_disc(lr=c.lr_gen, **c.optimizer_params)
|
optimizer_disc = optimizer_disc(lr=c.lr_gen, **c.optimizer_params)
|
||||||
|
|
||||||
# schedulers
|
# schedulers
|
||||||
scheduler_gen = None
|
scheduler_gen = None
|
||||||
|
|
|
@ -120,7 +120,7 @@ class GANDataset(Dataset):
|
||||||
else:
|
else:
|
||||||
audio = self.ap.load_wav(wavpath)
|
audio = self.ap.load_wav(wavpath)
|
||||||
mel = np.load(feat_path)
|
mel = np.load(feat_path)
|
||||||
audio, mel= self._pad_short_samples(audio, mel)
|
audio, mel = self._pad_short_samples(audio, mel)
|
||||||
|
|
||||||
# correct the audio length wrt padding applied in stft
|
# correct the audio length wrt padding applied in stft
|
||||||
audio = np.pad(audio, (0, self.hop_len), mode="edge")
|
audio = np.pad(audio, (0, self.hop_len), mode="edge")
|
||||||
|
|
|
@ -11,8 +11,7 @@ class MelganDiscriminator(nn.Module):
|
||||||
base_channels=16,
|
base_channels=16,
|
||||||
max_channels=1024,
|
max_channels=1024,
|
||||||
downsample_factors=(4, 4, 4, 4),
|
downsample_factors=(4, 4, 4, 4),
|
||||||
groups_denominator=4,
|
groups_denominator=4):
|
||||||
max_groups=256):
|
|
||||||
super(MelganDiscriminator, self).__init__()
|
super(MelganDiscriminator, self).__init__()
|
||||||
self.layers = nn.ModuleList()
|
self.layers = nn.ModuleList()
|
||||||
|
|
||||||
|
|
|
@ -89,4 +89,3 @@ def test_melgan_feature_loss():
|
||||||
loss_func = MelganFeatureLoss()
|
loss_func = MelganFeatureLoss()
|
||||||
loss = loss_func(feats_fake, feats_real)
|
loss = loss_func(feats_fake, feats_real)
|
||||||
assert loss.item() == 0
|
assert loss.item() == 0
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue