mirror of https://github.com/coqui-ai/TTS.git
parent
dcce1644b7
commit
d21f15cc85
15
README.md
15
README.md
|
@ -198,17 +198,18 @@ from TTS.api import TTS
|
|||
# Get device
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# List available 🐸TTS models and choose the first one
|
||||
model_name = TTS().list_models()[0]
|
||||
# List available 🐸TTS models
|
||||
print(TTS().list_models())
|
||||
|
||||
# Init TTS
|
||||
tts = TTS(model_name).to(device)
|
||||
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1").to(device)
|
||||
|
||||
# Run TTS
|
||||
# ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language
|
||||
# Text to speech with a numpy output
|
||||
wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
|
||||
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
||||
# Text to speech list of amplitude values as output
|
||||
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
||||
# Text to speech to a file
|
||||
tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
|
||||
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
```
|
||||
|
||||
#### Running a single speaker model
|
||||
|
|
|
@ -114,18 +114,24 @@ tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
|||
You can run a multi-speaker and multi-lingual model in Python as
|
||||
|
||||
```python
|
||||
import torch
|
||||
from TTS.api import TTS
|
||||
|
||||
# List available 🐸TTS models and choose the first one
|
||||
model_name = TTS().list_models()[0]
|
||||
# Get device
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# List available 🐸TTS models
|
||||
print(TTS().list_models())
|
||||
|
||||
# Init TTS
|
||||
tts = TTS(model_name)
|
||||
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1").to(device)
|
||||
|
||||
# Run TTS
|
||||
# ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language
|
||||
# Text to speech with a numpy output
|
||||
wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
|
||||
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
||||
# Text to speech list of amplitude values as output
|
||||
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
||||
# Text to speech to a file
|
||||
tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
|
||||
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
```
|
||||
|
||||
#### Here is an example for a single speaker model.
|
||||
|
|
Loading…
Reference in New Issue