Change order of HIFI-GAN optimizers to be equal than the original repository

This commit is contained in:
Edresson Casanova 2022-04-28 17:08:04 -03:00
parent 657c5442e5
commit d545beadb9
1 changed files with 43 additions and 39 deletions

View File

@ -89,51 +89,27 @@ class GAN(BaseVocoder):
if optimizer_idx not in [0, 1]:
raise ValueError(" [!] Unexpected `optimizer_idx`.")
if optimizer_idx == 0:
# GENERATOR
# DISCRIMINATOR optimization
# generator pass
y_hat = self.model_g(x)[:, :, : y.size(2)]
self.y_hat_g = y_hat # save for discriminator
y_hat_sub = None
y_sub = None
# cache for generator loss
self.y_hat_g = y_hat
self.y_hat_sub = None
self.y_sub_g = None
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat_sub = y_hat
self.y_hat_sub = y_hat
y_hat = self.model_g.pqmf_synthesis(y_hat)
self.y_hat_g = y_hat # save for discriminator
y_sub = self.model_g.pqmf_analysis(y)
self.y_hat_g = y_hat # save for generator loss
self.y_sub_g = self.model_g.pqmf_analysis(y)
scores_fake, feats_fake, feats_real = None, None, None
if self.train_disc:
if len(signature(self.model_d.forward).parameters) == 2:
D_out_fake = self.model_d(y_hat, x)
else:
D_out_fake = self.model_d(y_hat)
D_out_real = None
if self.config.use_feat_match_loss:
with torch.no_grad():
D_out_real = self.model_d(y)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
feats_fake, feats_real = None, None
# compute losses
loss_dict = criterion[optimizer_idx](y_hat, y, scores_fake, feats_fake, feats_real, y_hat_sub, y_sub)
outputs = {"model_outputs": y_hat}
if optimizer_idx == 1:
# DISCRIMINATOR
if self.train_disc:
# use different samples for G and D trainings
if self.config.diff_samples_for_G_and_D:
@ -177,6 +153,34 @@ class GAN(BaseVocoder):
loss_dict = criterion[optimizer_idx](scores_fake, scores_real)
outputs = {"model_outputs": y_hat}
if optimizer_idx == 1:
# GENERATOR loss
if self.train_disc:
if len(signature(self.model_d.forward).parameters) == 2:
D_out_fake = self.model_d(self.y_hat_g, x)
else:
D_out_fake = self.model_d(self.y_hat_g)
D_out_real = None
if self.config.use_feat_match_loss:
with torch.no_grad():
D_out_real = self.model_d(y)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
feats_fake, feats_real = None, None
# compute losses
loss_dict = criterion[optimizer_idx](self.y_hat_g, y, scores_fake, feats_fake, feats_real, self.y_hat_sub, self.y_sub_g)
outputs = {"model_outputs": self.y_hat_g}
return outputs, loss_dict
@staticmethod
@ -266,7 +270,7 @@ class GAN(BaseVocoder):
optimizer2 = get_optimizer(
self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.model_d
)
return [optimizer1, optimizer2]
return [optimizer2, optimizer1]
def get_lr(self) -> List:
"""Set the initial learning rates for each optimizer.
@ -274,7 +278,7 @@ class GAN(BaseVocoder):
Returns:
List: learning rates for each optimizer.
"""
return [self.config.lr_gen, self.config.lr_disc]
return [self.config.lr_disc, self.config.lr_gen]
def get_scheduler(self, optimizer) -> List:
"""Set the schedulers for each optimizer.
@ -287,7 +291,7 @@ class GAN(BaseVocoder):
"""
scheduler1 = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0])
scheduler2 = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1])
return [scheduler1, scheduler2]
return [scheduler2, scheduler1]
@staticmethod
def format_batch(batch: List) -> Dict:
@ -359,7 +363,7 @@ class GAN(BaseVocoder):
def get_criterion(self):
"""Return criterions for the optimizers"""
return [GeneratorLoss(self.config), DiscriminatorLoss(self.config)]
return [DiscriminatorLoss(self.config), GeneratorLoss(self.config)]
@staticmethod
def init_from_config(config: Coqpit, verbose=True) -> "GAN":