mirror of https://github.com/coqui-ai/TTS.git
Change order of HIFI-GAN optimizers to be equal than the original repository
This commit is contained in:
parent
657c5442e5
commit
d545beadb9
|
@ -89,51 +89,27 @@ class GAN(BaseVocoder):
|
|||
if optimizer_idx not in [0, 1]:
|
||||
raise ValueError(" [!] Unexpected `optimizer_idx`.")
|
||||
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# GENERATOR
|
||||
# DISCRIMINATOR optimization
|
||||
|
||||
# generator pass
|
||||
y_hat = self.model_g(x)[:, :, : y.size(2)]
|
||||
self.y_hat_g = y_hat # save for discriminator
|
||||
y_hat_sub = None
|
||||
y_sub = None
|
||||
|
||||
# cache for generator loss
|
||||
self.y_hat_g = y_hat
|
||||
self.y_hat_sub = None
|
||||
self.y_sub_g = None
|
||||
|
||||
# PQMF formatting
|
||||
if y_hat.shape[1] > 1:
|
||||
y_hat_sub = y_hat
|
||||
self.y_hat_sub = y_hat
|
||||
y_hat = self.model_g.pqmf_synthesis(y_hat)
|
||||
self.y_hat_g = y_hat # save for discriminator
|
||||
y_sub = self.model_g.pqmf_analysis(y)
|
||||
self.y_hat_g = y_hat # save for generator loss
|
||||
self.y_sub_g = self.model_g.pqmf_analysis(y)
|
||||
|
||||
scores_fake, feats_fake, feats_real = None, None, None
|
||||
if self.train_disc:
|
||||
|
||||
if len(signature(self.model_d.forward).parameters) == 2:
|
||||
D_out_fake = self.model_d(y_hat, x)
|
||||
else:
|
||||
D_out_fake = self.model_d(y_hat)
|
||||
D_out_real = None
|
||||
|
||||
if self.config.use_feat_match_loss:
|
||||
with torch.no_grad():
|
||||
D_out_real = self.model_d(y)
|
||||
|
||||
# format D outputs
|
||||
if isinstance(D_out_fake, tuple):
|
||||
scores_fake, feats_fake = D_out_fake
|
||||
if D_out_real is None:
|
||||
feats_real = None
|
||||
else:
|
||||
_, feats_real = D_out_real
|
||||
else:
|
||||
scores_fake = D_out_fake
|
||||
feats_fake, feats_real = None, None
|
||||
|
||||
# compute losses
|
||||
loss_dict = criterion[optimizer_idx](y_hat, y, scores_fake, feats_fake, feats_real, y_hat_sub, y_sub)
|
||||
outputs = {"model_outputs": y_hat}
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# DISCRIMINATOR
|
||||
if self.train_disc:
|
||||
# use different samples for G and D trainings
|
||||
if self.config.diff_samples_for_G_and_D:
|
||||
|
@ -177,6 +153,34 @@ class GAN(BaseVocoder):
|
|||
loss_dict = criterion[optimizer_idx](scores_fake, scores_real)
|
||||
outputs = {"model_outputs": y_hat}
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# GENERATOR loss
|
||||
if self.train_disc:
|
||||
if len(signature(self.model_d.forward).parameters) == 2:
|
||||
D_out_fake = self.model_d(self.y_hat_g, x)
|
||||
else:
|
||||
D_out_fake = self.model_d(self.y_hat_g)
|
||||
D_out_real = None
|
||||
|
||||
if self.config.use_feat_match_loss:
|
||||
with torch.no_grad():
|
||||
D_out_real = self.model_d(y)
|
||||
|
||||
# format D outputs
|
||||
if isinstance(D_out_fake, tuple):
|
||||
scores_fake, feats_fake = D_out_fake
|
||||
if D_out_real is None:
|
||||
feats_real = None
|
||||
else:
|
||||
_, feats_real = D_out_real
|
||||
else:
|
||||
scores_fake = D_out_fake
|
||||
feats_fake, feats_real = None, None
|
||||
|
||||
# compute losses
|
||||
loss_dict = criterion[optimizer_idx](self.y_hat_g, y, scores_fake, feats_fake, feats_real, self.y_hat_sub, self.y_sub_g)
|
||||
outputs = {"model_outputs": self.y_hat_g}
|
||||
|
||||
return outputs, loss_dict
|
||||
|
||||
@staticmethod
|
||||
|
@ -266,7 +270,7 @@ class GAN(BaseVocoder):
|
|||
optimizer2 = get_optimizer(
|
||||
self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.model_d
|
||||
)
|
||||
return [optimizer1, optimizer2]
|
||||
return [optimizer2, optimizer1]
|
||||
|
||||
def get_lr(self) -> List:
|
||||
"""Set the initial learning rates for each optimizer.
|
||||
|
@ -274,7 +278,7 @@ class GAN(BaseVocoder):
|
|||
Returns:
|
||||
List: learning rates for each optimizer.
|
||||
"""
|
||||
return [self.config.lr_gen, self.config.lr_disc]
|
||||
return [self.config.lr_disc, self.config.lr_gen]
|
||||
|
||||
def get_scheduler(self, optimizer) -> List:
|
||||
"""Set the schedulers for each optimizer.
|
||||
|
@ -287,7 +291,7 @@ class GAN(BaseVocoder):
|
|||
"""
|
||||
scheduler1 = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0])
|
||||
scheduler2 = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1])
|
||||
return [scheduler1, scheduler2]
|
||||
return [scheduler2, scheduler1]
|
||||
|
||||
@staticmethod
|
||||
def format_batch(batch: List) -> Dict:
|
||||
|
@ -359,7 +363,7 @@ class GAN(BaseVocoder):
|
|||
|
||||
def get_criterion(self):
|
||||
"""Return criterions for the optimizers"""
|
||||
return [GeneratorLoss(self.config), DiscriminatorLoss(self.config)]
|
||||
return [DiscriminatorLoss(self.config), GeneratorLoss(self.config)]
|
||||
|
||||
@staticmethod
|
||||
def init_from_config(config: Coqpit, verbose=True) -> "GAN":
|
||||
|
|
Loading…
Reference in New Issue