diff --git a/train.py b/train.py index e7d3cd4c..5b73e484 100644 --- a/train.py +++ b/train.py @@ -182,7 +182,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st, # print epoch stats print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "\ "AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} "\ - "AvgStopLoss:{:.5f} EpochTime:{:.2f}"\ + "AvgStopLoss:{:.5f} EpochTime:{:.2f} "\ "AvgStepTime:{:.2f}".format(current_step, avg_total_loss, avg_linear_loss, @@ -260,7 +260,7 @@ def evaluate(model, criterion, criterion_st, data_loader, ap, current_step): "StopLoss: {:.5f} ".format(loss.item(), linear_loss.item(), mel_loss.item(), - stop_loss.item())) + stop_loss.item()), flush=True) avg_linear_loss += linear_loss.item() avg_mel_loss += mel_loss.item() @@ -373,7 +373,7 @@ def main(args): ap.num_freq, c.num_mels, c.r) - print(" | > Num output units : {}".format(ap.num_freq)) + print(" | > Num output units : {}".format(ap.num_freq), flush=True) optimizer = optim.Adam(model.parameters(), lr=c.lr) optimizer_st = optim.Adam(model.decoder.stopnet.parameters(), lr=c.lr) @@ -394,20 +394,20 @@ def main(args): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() - print(" > Model restored from step %d" % checkpoint['step']) + print(" > Model restored from step %d" % checkpoint['step'], flush=True) start_epoch = checkpoint['step'] // len(train_loader) best_loss = checkpoint['linear_loss'] args.restore_step = checkpoint['step'] else: args.restore_step = 0 - print("\n > Starting a new training") + print("\n > Starting a new training", flush=True) if use_cuda: model = nn.DataParallel(model.cuda()) criterion.cuda() criterion_st.cuda() num_params = count_parameters(model) - print(" | > Model has {} parameters".format(num_params)) + print(" | > Model has {} parameters".format(num_params), flush=True) if not os.path.exists(CHECKPOINT_PATH): os.mkdir(CHECKPOINT_PATH) @@ -418,7 +418,7 @@ def main(args): for epoch in range(0, c.epochs): train_loss, current_step = train(model, criterion, criterion_st, train_loader, optimizer, optimizer_st, ap, epoch) val_loss = evaluate(model, criterion, criterion_st, val_loader, ap, current_step) - print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss)) + print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss), flush=True) best_loss = save_best_model(model, optimizer, train_loss, best_loss, OUT_PATH, current_step, epoch) diff --git a/utils/audio_lws.py b/utils/audio_lws.py index a7721eab..dc162659 100644 --- a/utils/audio_lws.py +++ b/utils/audio_lws.py @@ -105,4 +105,4 @@ class AudioProcessor(object): else: D = self._lws_processor().stft(y).T S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db - return self._normalize(S) + return self._normalize(S) \ No newline at end of file