mirror of https://github.com/coqui-ai/TTS.git
travis unit tests fix and add Tacotron and Tacotron 2 GST and MultiSpeaker Tests
This commit is contained in:
parent
7c12e94ee4
commit
def7e49f59
|
@ -53,6 +53,7 @@
|
|||
"max_seq_len": 300,
|
||||
"log_dir": "tests/outputs/",
|
||||
|
||||
<<<<<<< HEAD
|
||||
"use_speaker_embedding": false,
|
||||
"use_gst": false,
|
||||
"gst": {
|
||||
|
@ -61,4 +62,18 @@
|
|||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10
|
||||
}
|
||||
=======
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": true, // use global style tokens
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10
|
||||
}
|
||||
>>>>>>> travis unit tests fix and add Tacotron and Tacotron 2 GST and MultiSpeaker Tests
|
||||
}
|
||||
|
|
|
@ -58,8 +58,7 @@ class DecoderTests(unittest.TestCase):
|
|||
trans_agent=True,
|
||||
forward_attn_mask=True,
|
||||
location_attn=True,
|
||||
separate_stopnet=True,
|
||||
speaker_embedding_dim=0)
|
||||
separate_stopnet=True)
|
||||
dummy_input = T.rand(4, 8, 256)
|
||||
dummy_memory = T.rand(4, 2, 80)
|
||||
|
||||
|
@ -71,38 +70,6 @@ class DecoderTests(unittest.TestCase):
|
|||
assert output.shape[2] == 2, "size not {}".format(output.shape[2])
|
||||
assert stop_tokens.shape[0] == 4
|
||||
|
||||
@staticmethod
|
||||
def test_in_out_multispeaker():
|
||||
layer = Decoder(
|
||||
in_channels=256,
|
||||
frame_channels=80,
|
||||
r=2,
|
||||
memory_size=4,
|
||||
attn_windowing=False,
|
||||
attn_norm="sigmoid",
|
||||
attn_K=5,
|
||||
attn_type="graves",
|
||||
prenet_type='original',
|
||||
prenet_dropout=True,
|
||||
forward_attn=True,
|
||||
trans_agent=True,
|
||||
forward_attn_mask=True,
|
||||
location_attn=True,
|
||||
separate_stopnet=True,
|
||||
speaker_embedding_dim=80)
|
||||
dummy_input = T.rand(4, 8, 256)
|
||||
dummy_memory = T.rand(4, 2, 80)
|
||||
dummy_embed = T.rand(4, 80)
|
||||
|
||||
output, alignment, stop_tokens = layer(
|
||||
dummy_input, dummy_memory, mask=None, speaker_embeddings=dummy_embed)
|
||||
|
||||
assert output.shape[0] == 4
|
||||
assert output.shape[1] == 80, "size not {}".format(output.shape[1])
|
||||
assert output.shape[2] == 2, "size not {}".format(output.shape[2])
|
||||
assert stop_tokens.shape[0] == 4
|
||||
|
||||
|
||||
class EncoderTests(unittest.TestCase):
|
||||
def test_in_out(self): #pylint: disable=no-self-use
|
||||
layer = Encoder(128)
|
||||
|
|
|
@ -9,6 +9,7 @@ from torch import nn, optim
|
|||
from mozilla_voice_tts.tts.layers.losses import MSELossMasked
|
||||
from mozilla_voice_tts.tts.models.tacotron2 import Tacotron2
|
||||
from mozilla_voice_tts.utils.io import load_config
|
||||
from mozilla_voice_tts.utils.audio import AudioProcessor
|
||||
|
||||
#pylint: disable=unused-variable
|
||||
|
||||
|
@ -18,14 +19,12 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|||
|
||||
c = load_config(os.path.join(get_tests_input_path(), 'test_config.json'))
|
||||
|
||||
ap = AudioProcessor(**c.audio)
|
||||
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
|
||||
|
||||
|
||||
class TacotronTrainTest(unittest.TestCase):
|
||||
<<<<<<< HEAD
|
||||
def test_train_step(self): # pylint: disable=no-self-use
|
||||
=======
|
||||
@staticmethod
|
||||
def test_train_step():
|
||||
>>>>>>> small gst config change
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||
|
@ -75,3 +74,113 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
class TacotronGSTTrainTest(unittest.TestCase):
|
||||
@staticmethod
|
||||
def test_train_step():
|
||||
# with random gst mel style
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
mel_lengths[0] = 30
|
||||
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||
stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
|
||||
|
||||
criterion = MSELossMasked(seq_len_norm=False).to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device)
|
||||
model.train()
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
||||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for i in range(10):
|
||||
mel_out, mel_postnet_out, align, stop_tokens = model.forward(
|
||||
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids)
|
||||
assert torch.sigmoid(stop_tokens).data.max() <= 1.0
|
||||
assert torch.sigmoid(stop_tokens).data.min() >= 0.0
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
# if count not in [145, 59]:
|
||||
name, param = name_param
|
||||
if name == 'gst_layer.encoder.recurrence.weight_hh_l0':
|
||||
#print(param.grad)
|
||||
continue
|
||||
assert (param != param_ref).any(
|
||||
), "param {} {} with shape {} not updated!! \n{}\n{}".format(
|
||||
name, count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
# with file gst style
|
||||
mel_spec = torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :30].unsqueeze(0).transpose(1, 2).to(device)
|
||||
mel_spec = mel_spec.repeat(8, 1, 1)
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
mel_lengths[0] = 30
|
||||
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||
stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
|
||||
|
||||
criterion = MSELossMasked(seq_len_norm=False).to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device)
|
||||
model.train()
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
||||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for i in range(10):
|
||||
mel_out, mel_postnet_out, align, stop_tokens = model.forward(
|
||||
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids)
|
||||
assert torch.sigmoid(stop_tokens).data.max() <= 1.0
|
||||
assert torch.sigmoid(stop_tokens).data.min() >= 0.0
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
# if count not in [145, 59]:
|
||||
name, param = name_param
|
||||
if name == 'gst_layer.encoder.recurrence.weight_hh_l0':
|
||||
#print(param.grad)
|
||||
continue
|
||||
assert (param != param_ref).any(
|
||||
), "param {} {} with shape {} not updated!! \n{}\n{}".format(
|
||||
name, count, param.shape, param, param_ref)
|
||||
count += 1
|
|
@ -9,6 +9,7 @@ from torch import nn, optim
|
|||
from mozilla_voice_tts.tts.layers.losses import L1LossMasked
|
||||
from mozilla_voice_tts.tts.models.tacotron import Tacotron
|
||||
from mozilla_voice_tts.utils.io import load_config
|
||||
from mozilla_voice_tts.utils.audio import AudioProcessor
|
||||
|
||||
#pylint: disable=unused-variable
|
||||
|
||||
|
@ -18,6 +19,9 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|||
|
||||
c = load_config(os.path.join(get_tests_input_path(), 'test_config.json'))
|
||||
|
||||
ap = AudioProcessor(**c.audio)
|
||||
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
|
||||
|
||||
|
||||
def count_parameters(model):
|
||||
r"""Count number of trainable parameters in a network"""
|
||||
|
@ -85,10 +89,10 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
|
||||
class TacotronGSTTrainTest(unittest.TestCase):
|
||||
@staticmethod
|
||||
def test_train_step():
|
||||
# with random gst mel style
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
||||
input_lengths[-1] = 128
|
||||
|
@ -113,13 +117,82 @@ class TacotronGSTTrainTest(unittest.TestCase):
|
|||
num_chars=32,
|
||||
num_speakers=5,
|
||||
gst=True,
|
||||
postnet_output_dim=c.audio['num_freq'],
|
||||
gst_embedding_dim=c.gst['gst_embedding_dim'],
|
||||
gst_num_heads=c.gst['gst_num_heads'],
|
||||
gst_style_tokens=c.gst['gst_style_tokens'],
|
||||
postnet_output_dim=c.audio['fft_size'],
|
||||
decoder_output_dim=c.audio['num_mels'],
|
||||
r=c.r,
|
||||
memory_size=c.memory_size
|
||||
).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
model.train()
|
||||
print(model)
|
||||
# print(model)
|
||||
print(" > Num parameters for Tacotron GST model:%s" %
|
||||
(count_parameters(model)))
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(),
|
||||
model_ref.parameters()):
|
||||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for _ in range(10):
|
||||
mel_out, linear_out, align, stop_tokens = model.forward(
|
||||
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(linear_out, linear_spec,
|
||||
mel_lengths) + stop_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(),
|
||||
model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
assert (param != param_ref).any(
|
||||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
# with file gst style
|
||||
mel_spec = torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device)
|
||||
mel_spec = mel_spec.repeat(8, 1, 1)
|
||||
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
||||
input_lengths[-1] = 128
|
||||
linear_spec = torch.rand(8, mel_spec.size(1), c.audio['fft_size']).to(device)
|
||||
mel_lengths = torch.randint(20, mel_spec.size(1), (8, )).long().to(device)
|
||||
mel_lengths[-1] = mel_spec.size(1)
|
||||
stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device)
|
||||
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||
stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) >
|
||||
0.0).unsqueeze(2).float().squeeze()
|
||||
|
||||
criterion = L1LossMasked(seq_len_norm=False).to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron(
|
||||
num_chars=32,
|
||||
num_speakers=5,
|
||||
gst=True,
|
||||
gst_embedding_dim=c.gst['gst_embedding_dim'],
|
||||
gst_num_heads=c.gst['gst_num_heads'],
|
||||
gst_style_tokens=c.gst['gst_style_tokens'],
|
||||
postnet_output_dim=c.audio['fft_size'],
|
||||
decoder_output_dim=c.audio['num_mels'],
|
||||
r=c.r,
|
||||
memory_size=c.memory_size
|
||||
).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
model.train()
|
||||
# print(model)
|
||||
print(" > Num parameters for Tacotron GST model:%s" %
|
||||
(count_parameters(model)))
|
||||
model_ref = copy.deepcopy(model)
|
||||
|
|
Loading…
Reference in New Issue