modularize synthesis

This commit is contained in:
Eren Golge 2019-06-12 12:12:22 +02:00
parent 0f8936d744
commit e061ed091a
1 changed files with 32 additions and 1 deletions

View File

@ -8,7 +8,38 @@ from .visual import visualize
from matplotlib import pylab as plt
def synthesis(model, text, CONFIG, use_cuda, ap, truncated=False, enable_eos_bos_chars=False, trim_silence=False):
def text_to_seqvec(text, CONFIG, use_cuda):
text_cleaner = [CONFIG.text_cleaner]
if CONFIG.use_phonemes:
seq = np.asarray(
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, enable_eos_bos_chars),
dtype=np.int32)
else:
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda()
return chars_var.long()
def compute_style_mel(style_wav, ap):
style_mel = torch.FloatTensor(ap.melspectrogram(ap.load_wav(style_wav))).unsqueeze(0)
return style_mel
def run_model():
pass
def parse_outputs():
pass
def trim_silence():
pass
def synthesis(model, text, CONFIG, use_cuda, ap, style_wav=None, truncated=False, enable_eos_bos_chars=False, trim_silence=False):
"""Synthesize voice for the given text.
Args: