glow-tts modules added

This commit is contained in:
erogol 2020-09-21 14:15:40 +02:00
parent e4c6386603
commit e0b9fa887f
8 changed files with 656 additions and 22 deletions

View File

@ -10,37 +10,32 @@ import traceback
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.utils.console_logger import ConsoleLogger
from TTS.tts.utils.distribute import (DistributedSampler,
init_distributed,
reduce_tensor)
from TTS.tts.utils.distribute import (DistributedSampler, init_distributed,
reduce_tensor)
from TTS.tts.utils.generic_utils import check_config, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import (get_speakers,
load_speaker_mapping,
save_speaker_mapping)
from TTS.tts.utils.speakers import (get_speakers, load_speaker_mapping,
save_speaker_mapping)
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (
KeepAverage, count_parameters, create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_config_file, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import (NoamLR, adam_weight_decay,
check_update,
gradual_training_scheduler,
set_weight_decay,
setup_torch_training_env)
from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
gradual_training_scheduler, set_weight_decay,
setup_torch_training_env)
use_cuda, num_gpus = setup_torch_training_env(True, False)
@ -116,7 +111,7 @@ def format_data(data):
def data_depended_init(model, ap):
"""Data depended initialization for normalization layers."""
"""Data depended initialization for activation normalization."""
if hasattr(model, 'module'):
for f in model.module.decoder.flows:
if getattr(f, "set_ddi", False):

View File

@ -0,0 +1,132 @@
{
"model": "glow_tts",
"run_name": "glow-tts-gatedconv",
"run_description": "glow-tts model training with gated conv.",
// AUDIO PARAMETERS
"audio":{
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 0, // reference level db, theoretically 20db is the sound of air.
// Griffin-Lim
"power": 1.1, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 1.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
// "characters":{
// "pad": "_",
// "eos": "~",
// "bos": "^",
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
// "punctuations":"!'(),-.:;? ",
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// MODEL PARAMETERS
"use_mas": false, // use Monotonic Alignment Search if true. Otherwise use pre-computed attention alignments.
// TRAINING
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 1, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": true, // use noam warmup and lr schedule.
"grad_clip": 5.0, // upper limit for gradients for clipping.
"epochs": 10000, // total number of epochs to train.
"lr": 1e-3, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
"encoder_type": "gatedconv",
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"apex_amp_level": null,
// DATA LOADING
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
"min_seq_len": 3, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 500, // DATASET-RELATED: maximum text length
"compute_f0": false, // compute f0 values in data-loader
// PATHS
"output_path": "/home/erogol/Models/LJSpeech/",
// PHONEMES
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"style_wav_for_test": null, // path to style wav file to be used in TacotronGST inference.
"use_gst": false, // TACOTRON ONLY: use global style tokens
// DATASETS
"datasets": // List of datasets. They all merged and they get different speaker_ids.
[
{
"name": "ljspeech",
"path": "/home/erogol/Data/LJSpeech-1.1/",
"meta_file_train": "metadata.csv",
"meta_file_val": null
// "path_for_attn": "/home/erogol/Data/LJSpeech-1.1/alignments/"
}
]
}

View File

@ -0,0 +1,132 @@
{
"model": "glow_tts",
"run_name": "glow-tts-tdsep-conv",
"run_description": "glow-tts model training with time-depth separable conv encoder.",
// AUDIO PARAMETERS
"audio":{
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 0, // reference level db, theoretically 20db is the sound of air.
// Griffin-Lim
"power": 1.1, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 1.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
// "characters":{
// "pad": "_",
// "eos": "~",
// "bos": "^",
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
// "punctuations":"!'(),-.:;? ",
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// MODEL PARAMETERS
"use_mas": false, // use Monotonic Alignment Search if true. Otherwise use pre-computed attention alignments.
// TRAINING
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 1, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": true, // use noam warmup and lr schedule.
"grad_clip": 5.0, // upper limit for gradients for clipping.
"epochs": 10000, // total number of epochs to train.
"lr": 1e-3, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
"encoder_type": "time-depth-separable",
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"apex_amp_level": null,
// DATA LOADING
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
"min_seq_len": 3, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 500, // DATASET-RELATED: maximum text length
"compute_f0": false, // compute f0 values in data-loader
// PATHS
"output_path": "/home/erogol/Models/LJSpeech/",
// PHONEMES
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"style_wav_for_test": null, // path to style wav file to be used in TacotronGST inference.
"use_gst": false, // TACOTRON ONLY: use global style tokens
// DATASETS
"datasets": // List of datasets. They all merged and they get different speaker_ids.
[
{
"name": "ljspeech",
"path": "/home/erogol/Data/LJSpeech-1.1/",
"meta_file_train": "metadata.csv",
"meta_file_val": null
// "path_for_attn": "/home/erogol/Data/LJSpeech-1.1/alignments/"
}
]
}

View File

@ -0,0 +1,44 @@
import torch
from torch import nn
from .normalization import LayerNorm
class GatedConvBlock(nn.Module):
"""Gated convolutional block as in https://arxiv.org/pdf/1612.08083.pdf
Args:
in_out_channels (int): number of input/output channels.
kernel_size (int): convolution kernel size.
dropout_p (float): dropout rate.
"""
def __init__(self, in_out_channels, kernel_size, dropout_p, num_layers):
super().__init__()
# class arguments
self.dropout_p = dropout_p
self.num_layers = num_layers
# define layers
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.conv_layers += [
nn.Conv1d(in_out_channels,
2 * in_out_channels,
kernel_size,
padding=kernel_size // 2)
]
self.norm_layers += [LayerNorm(2 * in_out_channels)]
def forward(self, x, x_mask):
o = x
res = x
for idx in range(self.num_layers):
o = nn.functional.dropout(o,
p=self.dropout_p,
training=self.training)
o = self.conv_layers[idx](o * x_mask)
o = self.norm_layers[idx](o)
o = nn.functional.glu(o, dim=1)
o = res + o
res = o
return o

View File

@ -0,0 +1,101 @@
import torch
from torch import nn
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-4):
"""Layer norm for the 2nd dimension of the input.
Args:
channels (int): number of channels (2nd dimension) of the input.
eps (float): to prevent 0 division
Shapes:
- input: (B, C, T)
- output: (B, C, T)
"""
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1)
self.beta = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x):
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean)**2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
x = x * self.gamma + self.beta
return x
class TemporalBatchNorm1d(nn.BatchNorm1d):
"""Normalize each channel separately over time and batch.
"""
def __init__(self, channels, affine=True, track_running_stats=True, momentum=0.1):
super(TemporalBatchNorm1d, self).__init__(channels, affine=affine, track_running_stats=track_running_stats, momentum=momentum)
def forward(self, x):
return super().forward(x.transpose(2,1)).transpose(2,1)
class ActNorm(nn.Module):
"""Activation Normalization bijector as an alternative to Batch Norm. It computes
mean and std from a sample data in advance and it uses these values
for normalization at training.
Args:
channels (int): input channels.
ddi (False): data depended initialization flag.
Shapes:
- inputs: (B, C, T)
- outputs: (B, C, T)
"""
def __init__(self, channels, ddi=False, **kwargs): # pylint: disable=unused-argument
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device,
dtype=x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = None
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m**2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(
dtype=self.bias.dtype)
logs_init = (-logs).view(*self.logs.shape).to(
dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)

View File

@ -0,0 +1,94 @@
import torch
from torch import nn
from .normalization import LayerNorm
class TimeDepthSeparableConv(nn.Module):
"""Time depth separable convolution as in https://arxiv.org/pdf/1904.02619.pdf
It shows competative results with less computation and memory footprint."""
def __init__(self,
in_channels,
hid_channels,
out_channels,
kernel_size,
bias=True):
super(TimeDepthSeparableConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hid_channels = hid_channels
self.kernel_size = kernel_size
self.time_conv = nn.Conv1d(
in_channels,
2 * hid_channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.norm1 = nn.BatchNorm1d(2 * hid_channels)
self.depth_conv = nn.Conv1d(
hid_channels,
hid_channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=hid_channels,
bias=bias,
)
self.norm2 = nn.BatchNorm1d(hid_channels)
self.time_conv2 = nn.Conv1d(
hid_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.norm3 = nn.BatchNorm1d(out_channels)
def forward(self, x):
x_res = x
x = self.time_conv(x)
x = self.norm1(x)
x = nn.functional.glu(x, dim=1)
x = self.depth_conv(x)
x = self.norm2(x)
x = x * torch.sigmoid(x)
x = self.time_conv2(x)
x = self.norm3(x)
x = x_res + x
return x
class TimeDepthSeparableConvBlock(nn.Module):
def __init__(self,
in_channels,
hid_channels,
out_channels,
num_layers,
kernel_size,
bias=True):
super(TimeDepthSeparableConvBlock, self).__init__()
assert (kernel_size - 1) % 2 == 0
assert num_layers > 1
self.layers = nn.ModuleList()
layer = TimeDepthSeparableConv(
in_channels, hid_channels,
out_channels if num_layers == 1 else hid_channels, kernel_size,
bias)
self.layers.append(layer)
for idx in range(num_layers - 1):
layer = TimeDepthSeparableConv(
hid_channels, hid_channels, out_channels if
(idx + 1) == (num_layers - 1) else hid_channels, kernel_size,
bias)
self.layers.append(layer)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x * mask)
return x

View File

@ -112,10 +112,11 @@ class GlowTts(nn.Module):
def forward(self, x, x_lengths, y=None, y_lengths=None, attn=None, g=None):
"""
x: B x T
x_lenghts: B
y: B x D x T
y_lengths: B
Shapes:
x: B x T
x_lenghts: B
y: B x C x T
y_lengths: B
"""
y_max_length = y.size(2)
# norm speaker embeddings

135
tests/test_glow_tts.py Normal file
View File

@ -0,0 +1,135 @@
import copy
import os
import unittest
import torch
from tests import get_tests_input_path
from torch import nn, optim
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.models.glow_tts import GlowTts
from TTS.utils.io import load_config
from TTS.utils.audio import AudioProcessor
#pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
c = load_config(os.path.join(get_tests_input_path(), 'test_config.json'))
ap = AudioProcessor(**c.audio)
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class GlowTTSTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, c.audio['num_mels'], 30).to(device)
linear_spec = torch.rand(8, 30, c.audio['fft_size']).to(device)
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
criterion = criterion = GlowTTSLoss()
# model to train
model = GlowTts(
num_chars=32,
hidden_channels=128,
filter_channels=32,
filter_channels_dp=32,
out_channels=80,
kernel_size=3,
num_heads=2,
num_layers_enc=6,
dropout_p=0.1,
num_flow_blocks_dec=12,
kernel_size_dec=5,
dilation_rate=5,
num_block_layers=4,
dropout_p_dec=0.,
num_speakers=0,
c_in_channels=0,
num_splits=4,
num_sqz=1,
sigmoid_scale=False,
rel_attn_window_size=None,
input_length=None,
mean_only=False,
hidden_channels_enc=None,
hidden_channels_dec=None,
use_encoder_prenet=False,
encoder_type="transformer"
).to(device)
# reference model to compare model weights
model_ref = GlowTts(
num_chars=32,
hidden_channels=128,
filter_channels=32,
filter_channels_dp=32,
out_channels=80,
kernel_size=3,
num_heads=2,
num_layers_enc=6,
dropout_p=0.1,
num_flow_blocks_dec=12,
kernel_size_dec=5,
dilation_rate=5,
num_block_layers=4,
dropout_p_dec=0.,
num_speakers=0,
c_in_channels=0,
num_splits=4,
num_sqz=1,
sigmoid_scale=False,
rel_attn_window_size=None,
input_length=None,
mean_only=False,
hidden_channels_enc=None,
hidden_channels_dec=None,
use_encoder_prenet=False,
encoder_type="transformer"
).to(device)
model.train()
print(" > Num parameters for GlowTTS model:%s" %
(count_parameters(model)))
# pass the state to ref model
model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
count = 0
for param, param_ref in zip(model.parameters(),
model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=c.lr)
for _ in range(5):
z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
input_dummy, input_lengths, mel_spec, mel_lengths, None)
optimizer.zero_grad()
loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
o_dur_log, o_total_dur, input_lengths)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(),
model_ref.parameters()):
assert (param != param_ref).any(
), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref)
count += 1