mirror of https://github.com/coqui-ai/TTS.git
Fix #873
This commit is contained in:
parent
21cc0517a3
commit
e15bc157d8
|
@ -626,17 +626,13 @@ class Trainer:
|
|||
# https://nvidia.github.io/apex/advanced.html?highlight=accumulate#backward-passes-with-multiple-optimizers
|
||||
with amp.scale_loss(loss_dict["loss"], optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
amp.master_params(optimizer), grad_clip, error_if_nonfinite=False
|
||||
)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), grad_clip)
|
||||
else:
|
||||
# model optimizer step in mixed precision mode
|
||||
scaler.scale(loss_dict["loss"]).backward()
|
||||
if grad_clip > 0:
|
||||
scaler.unscale_(optimizer)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
self.master_params(optimizer), grad_clip, error_if_nonfinite=False
|
||||
)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params(optimizer), grad_clip)
|
||||
# pytorch skips the step when the norm is 0. So ignore the norm value when it is NaN
|
||||
if torch.isnan(grad_norm) or torch.isinf(grad_norm):
|
||||
grad_norm = 0
|
||||
|
@ -648,7 +644,7 @@ class Trainer:
|
|||
# main model optimizer step
|
||||
loss_dict["loss"].backward()
|
||||
if grad_clip > 0:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip, error_if_nonfinite=False)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
||||
optimizer.step()
|
||||
|
||||
step_time = time.time() - step_start_time
|
||||
|
|
|
@ -29,9 +29,7 @@ def preprocess_wav_files(out_path: str, config: Coqpit, ap: AudioProcessor):
|
|||
mel = ap.melspectrogram(y)
|
||||
np.save(mel_path, mel)
|
||||
if isinstance(config.mode, int):
|
||||
quant = (
|
||||
ap.mulaw_encode(y, qc=config.mode) if config.model_args.mulaw else ap.quantize(y, bits=config.mode)
|
||||
)
|
||||
quant = ap.mulaw_encode(y, qc=config.mode) if config.model_args.mulaw else ap.quantize(y, bits=config.mode)
|
||||
np.save(quant_path, quant)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue