mirror of https://github.com/coqui-ai/TTS.git
docs: streamline readme and reuse content in other docs pages
[ci skip]
This commit is contained in:
parent
ae2f8d2354
commit
e38dcbea7a
236
README.md
236
README.md
|
@ -1,39 +1,34 @@
|
|||
# 🐸Coqui TTS
|
||||
## News
|
||||
- 📣 Fork of the [original, unmaintained repository](https://github.com/coqui-ai/TTS). New PyPI package: [coqui-tts](https://pypi.org/project/coqui-tts)
|
||||
- 📣 [OpenVoice](https://github.com/myshell-ai/OpenVoice) models now available for voice conversion.
|
||||
- 📣 Prebuilt wheels are now also published for Mac and Windows (in addition to Linux as before) for easier installation across platforms.
|
||||
- 📣 XTTSv2 is here with 17 languages and better performance across the board. XTTS can stream with <200ms latency.
|
||||
- 📣 XTTS fine-tuning code is out. Check the [example recipes](https://github.com/idiap/coqui-ai-TTS/tree/dev/recipes/ljspeech).
|
||||
- 📣 You can use [Fairseq models in ~1100 languages](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS.
|
||||
|
||||
## <img src="https://raw.githubusercontent.com/idiap/coqui-ai-TTS/main/images/coqui-log-green-TTS.png" height="56"/>
|
||||
# <img src="https://raw.githubusercontent.com/idiap/coqui-ai-TTS/main/images/coqui-log-green-TTS.png" height="56"/>
|
||||
|
||||
|
||||
**🐸TTS is a library for advanced Text-to-Speech generation.**
|
||||
**🐸 Coqui TTS is a library for advanced Text-to-Speech generation.**
|
||||
|
||||
🚀 Pretrained models in +1100 languages.
|
||||
|
||||
🛠️ Tools for training new models and fine-tuning existing models in any language.
|
||||
|
||||
📚 Utilities for dataset analysis and curation.
|
||||
______________________________________________________________________
|
||||
|
||||
[](https://discord.gg/5eXr5seRrv)
|
||||

|
||||
[](https://pypi.org/project/coqui-tts/)
|
||||
[](https://opensource.org/licenses/MPL-2.0)
|
||||
[](https://badge.fury.io/py/coqui-tts)
|
||||
[](https://pypi.org/project/coqui-tts/)
|
||||
[](https://pepy.tech/project/coqui-tts)
|
||||
[](https://zenodo.org/badge/latestdoi/265612440)
|
||||
|
||||

|
||||

|
||||

|
||||
[](https://github.com/idiap/coqui-ai-TTS/actions/workflows/tests.yml)
|
||||
[](https://github.com/idiap/coqui-ai-TTS/actions/workflows/docker.yaml)
|
||||
[](https://github.com/idiap/coqui-ai-TTS/actions/workflows/style_check.yml)
|
||||
[](https://coqui-tts.readthedocs.io/en/latest/)
|
||||
|
||||
</div>
|
||||
|
||||
______________________________________________________________________
|
||||
## 📣 News
|
||||
- **Fork of the [original, unmaintained repository](https://github.com/coqui-ai/TTS). New PyPI package: [coqui-tts](https://pypi.org/project/coqui-tts)**
|
||||
- 0.25.0: [OpenVoice](https://github.com/myshell-ai/OpenVoice) models now available for voice conversion.
|
||||
- 0.24.2: Prebuilt wheels are now also published for Mac and Windows (in addition to Linux as before) for easier installation across platforms.
|
||||
- 0.20.0: XTTSv2 is here with 17 languages and better performance across the board. XTTS can stream with <200ms latency.
|
||||
- 0.19.0: XTTS fine-tuning code is out. Check the [example recipes](https://github.com/idiap/coqui-ai-TTS/tree/dev/recipes/ljspeech).
|
||||
- 0.14.1: You can use [Fairseq models in ~1100 languages](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS.
|
||||
|
||||
## 💬 Where to ask questions
|
||||
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.
|
||||
|
@ -117,8 +112,10 @@ repository are also still a useful source of information.
|
|||
|
||||
You can also help us implement more models.
|
||||
|
||||
<!-- start installation -->
|
||||
## Installation
|
||||
🐸TTS is tested on Ubuntu 24.04 with **python >= 3.9, < 3.13.**, but should also
|
||||
|
||||
🐸TTS is tested on Ubuntu 24.04 with **python >= 3.9, < 3.13**, but should also
|
||||
work on Mac and Windows.
|
||||
|
||||
If you are only interested in [synthesizing speech](https://coqui-tts.readthedocs.io/en/latest/inference.html) with the pretrained 🐸TTS models, installing from PyPI is the easiest option.
|
||||
|
@ -159,13 +156,15 @@ pip install -e .[server,ja]
|
|||
|
||||
### Platforms
|
||||
|
||||
If you are on Ubuntu (Debian), you can also run following commands for installation.
|
||||
If you are on Ubuntu (Debian), you can also run the following commands for installation.
|
||||
|
||||
```bash
|
||||
make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
|
||||
make system-deps
|
||||
make install
|
||||
```
|
||||
|
||||
<!-- end installation -->
|
||||
|
||||
## Docker Image
|
||||
You can also try out Coqui TTS without installation with the docker image.
|
||||
Simply run the following command and you will be able to run TTS:
|
||||
|
@ -182,10 +181,10 @@ More details about the docker images (like GPU support) can be found
|
|||
|
||||
|
||||
## Synthesizing speech by 🐸TTS
|
||||
|
||||
<!-- start inference -->
|
||||
### 🐍 Python API
|
||||
|
||||
#### Running a multi-speaker and multi-lingual model
|
||||
#### Multi-speaker and multi-lingual model
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
@ -197,47 +196,60 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|||
# List available 🐸TTS models
|
||||
print(TTS().list_models())
|
||||
|
||||
# Init TTS
|
||||
# Initialize TTS
|
||||
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
||||
|
||||
# List speakers
|
||||
print(tts.speakers)
|
||||
|
||||
# Run TTS
|
||||
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
||||
# Text to speech list of amplitude values as output
|
||||
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
||||
# Text to speech to a file
|
||||
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
# ❗ XTTS supports both, but many models allow only one of the `speaker` and
|
||||
# `speaker_wav` arguments
|
||||
|
||||
# TTS with list of amplitude values as output, clone the voice from `speaker_wav`
|
||||
wav = tts.tts(
|
||||
text="Hello world!",
|
||||
speaker_wav="my/cloning/audio.wav",
|
||||
language="en"
|
||||
)
|
||||
|
||||
# TTS to a file, use a preset speaker
|
||||
tts.tts_to_file(
|
||||
text="Hello world!",
|
||||
speaker="Craig Gutsy",
|
||||
language="en",
|
||||
file_path="output.wav"
|
||||
)
|
||||
```
|
||||
|
||||
#### Running a single speaker model
|
||||
#### Single speaker model
|
||||
|
||||
```python
|
||||
# Init TTS with the target model name
|
||||
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)
|
||||
# Initialize TTS with the target model name
|
||||
tts = TTS("tts_models/de/thorsten/tacotron2-DDC").to(device)
|
||||
|
||||
# Run TTS
|
||||
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
|
||||
|
||||
# Example voice cloning with YourTTS in English, French and Portuguese
|
||||
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
|
||||
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
|
||||
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
|
||||
```
|
||||
|
||||
#### Example voice conversion
|
||||
#### Voice conversion (VC)
|
||||
|
||||
Converting the voice in `source_wav` to the voice of `target_wav`
|
||||
|
||||
```python
|
||||
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
|
||||
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
|
||||
tts = TTS("voice_conversion_models/multilingual/vctk/freevc24").to("cuda")
|
||||
tts.voice_conversion_to_file(
|
||||
source_wav="my/source.wav",
|
||||
target_wav="my/target.wav",
|
||||
file_path="output.wav"
|
||||
)
|
||||
```
|
||||
|
||||
Other available voice conversion models:
|
||||
- `voice_conversion_models/multilingual/multi-dataset/openvoice_v1`
|
||||
- `voice_conversion_models/multilingual/multi-dataset/openvoice_v2`
|
||||
|
||||
#### Example voice cloning together with the default voice conversion model.
|
||||
#### Voice cloning by combining single speaker TTS model with the default VC model
|
||||
|
||||
This way, you can clone voices by using any model in 🐸TTS. The FreeVC model is
|
||||
used for voice conversion after synthesizing speech.
|
||||
|
@ -252,7 +264,7 @@ tts.tts_with_vc_to_file(
|
|||
)
|
||||
```
|
||||
|
||||
#### Example text to speech using **Fairseq models in ~1100 languages** 🤯.
|
||||
#### TTS using Fairseq models in ~1100 languages 🤯
|
||||
For Fairseq models, use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`.
|
||||
You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html)
|
||||
and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
|
||||
|
@ -266,7 +278,7 @@ api.tts_to_file(
|
|||
)
|
||||
```
|
||||
|
||||
### Command-line `tts`
|
||||
### Command-line interface `tts`
|
||||
|
||||
<!-- begin-tts-readme -->
|
||||
|
||||
|
@ -274,120 +286,118 @@ Synthesize speech on the command line.
|
|||
|
||||
You can either use your trained model or choose a model from the provided list.
|
||||
|
||||
If you don't specify any models, then it uses a Tacotron2 English model trained
|
||||
on LJSpeech.
|
||||
|
||||
#### Single Speaker Models
|
||||
|
||||
- List provided models:
|
||||
|
||||
```
|
||||
$ tts --list_models
|
||||
```sh
|
||||
tts --list_models
|
||||
```
|
||||
|
||||
- Get model info (for both tts_models and vocoder_models):
|
||||
|
||||
- Query by type/name:
|
||||
The model_info_by_name uses the name as it from the --list_models.
|
||||
```
|
||||
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
For example:
|
||||
```
|
||||
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
|
||||
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
|
||||
```
|
||||
- Query by type/idx:
|
||||
The model_query_idx uses the corresponding idx from --list_models.
|
||||
|
||||
```
|
||||
$ tts --model_info_by_idx "<model_type>/<model_query_idx>"
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --model_info_by_idx tts_models/3
|
||||
```
|
||||
|
||||
- Query info for model info by full name:
|
||||
```
|
||||
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
- Run TTS with default models:
|
||||
|
||||
- Get model information. Use the names obtained from `--list_models`.
|
||||
```sh
|
||||
tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
||||
For example:
|
||||
```sh
|
||||
tts --model_info_by_name tts_models/tr/common-voice/glow-tts
|
||||
tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
|
||||
```
|
||||
|
||||
#### Single speaker models
|
||||
|
||||
- Run TTS with the default model (`tts_models/en/ljspeech/tacotron2-DDC`):
|
||||
|
||||
```sh
|
||||
tts --text "Text for TTS" --out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run TTS and pipe out the generated TTS wav file data:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
||||
```sh
|
||||
tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
||||
```
|
||||
|
||||
- Run a TTS model with its default vocoder model:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "<model_type>/<language>/<dataset>/<model_name>" \
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "tts_models/en/ljspeech/glow-tts" \
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run with specific TTS and vocoder models from the list:
|
||||
- Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "<model_type>/<language>/<dataset>/<model_name>" \
|
||||
--vocoder_name "<model_type>/<language>/<dataset>/<model_name>" \
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "tts_models/en/ljspeech/glow-tts" \
|
||||
--vocoder_name "vocoder_models/en/ljspeech/univnet" \
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run your own TTS model (Using Griffin-Lim Vocoder):
|
||||
- Run your own TTS model (using Griffin-Lim Vocoder):
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_path path/to/model.pth \
|
||||
--config_path path/to/config.json \
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run your own TTS and Vocoder models:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
||||
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
|
||||
```sh
|
||||
tts --text "Text for TTS" \
|
||||
--model_path path/to/model.pth \
|
||||
--config_path path/to/config.json \
|
||||
--out_path output/path/speech.wav \
|
||||
--vocoder_path path/to/vocoder.pth \
|
||||
--vocoder_config_path path/to/vocoder_config.json
|
||||
```
|
||||
|
||||
#### Multi-speaker Models
|
||||
#### Multi-speaker models
|
||||
|
||||
- List the available speakers and choose a <speaker_id> among them:
|
||||
- List the available speakers and choose a `<speaker_id>` among them:
|
||||
|
||||
```
|
||||
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
||||
```sh
|
||||
tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
||||
```
|
||||
|
||||
- Run the multi-speaker TTS model with the target speaker ID:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
||||
```sh
|
||||
tts --text "Text for TTS." --out_path output/path/speech.wav \
|
||||
--model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
||||
```
|
||||
|
||||
- Run your own multi-speaker TTS model:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
||||
```sh
|
||||
tts --text "Text for TTS" --out_path output/path/speech.wav \
|
||||
--model_path path/to/model.pth --config_path path/to/config.json \
|
||||
--speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
||||
```
|
||||
|
||||
### Voice Conversion Models
|
||||
#### Voice conversion models
|
||||
|
||||
```
|
||||
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
||||
```sh
|
||||
tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" \
|
||||
--source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
||||
```
|
||||
|
||||
<!-- end-tts-readme -->
|
||||
|
|
|
@ -14,123 +14,122 @@ from TTS.utils.generic_utils import ConsoleFormatter, setup_logger
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
description = """
|
||||
Synthesize speech on command line.
|
||||
Synthesize speech on the command line.
|
||||
|
||||
You can either use your trained model or choose a model from the provided list.
|
||||
|
||||
If you don't specify any models, then it uses LJSpeech based English model.
|
||||
- List provided models:
|
||||
|
||||
```sh
|
||||
tts --list_models
|
||||
```
|
||||
|
||||
- Get model information. Use the names obtained from `--list_models`.
|
||||
```sh
|
||||
tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
For example:
|
||||
```sh
|
||||
tts --model_info_by_name tts_models/tr/common-voice/glow-tts
|
||||
tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
|
||||
```
|
||||
|
||||
#### Single Speaker Models
|
||||
|
||||
- List provided models:
|
||||
- Run TTS with the default model (`tts_models/en/ljspeech/tacotron2-DDC`):
|
||||
|
||||
```
|
||||
$ tts --list_models
|
||||
```
|
||||
|
||||
- Get model info (for both tts_models and vocoder_models):
|
||||
|
||||
- Query by type/name:
|
||||
The model_info_by_name uses the name as it from the --list_models.
|
||||
```
|
||||
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
For example:
|
||||
```
|
||||
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
|
||||
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
|
||||
```
|
||||
- Query by type/idx:
|
||||
The model_query_idx uses the corresponding idx from --list_models.
|
||||
|
||||
```
|
||||
$ tts --model_info_by_idx "<model_type>/<model_query_idx>"
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --model_info_by_idx tts_models/3
|
||||
```
|
||||
|
||||
- Query info for model info by full name:
|
||||
```
|
||||
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
- Run TTS with default models:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" --out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run TTS and pipe out the generated TTS wav file data:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
||||
```sh
|
||||
tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
||||
```
|
||||
|
||||
- Run a TTS model with its default vocoder model:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_name "<model_type>/<language>/<dataset>/<model_name>" \\
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_name "tts_models/en/ljspeech/glow-tts" \\
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run with specific TTS and vocoder models from the list:
|
||||
- Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_name "<model_type>/<language>/<dataset>/<model_name>" \\
|
||||
--vocoder_name "<model_type>/<language>/<dataset>/<model_name>" \\
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_name "tts_models/en/ljspeech/glow-tts" \\
|
||||
--vocoder_name "vocoder_models/en/ljspeech/univnet" \\
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run your own TTS model (Using Griffin-Lim Vocoder):
|
||||
- Run your own TTS model (using Griffin-Lim Vocoder):
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_path path/to/model.pth \\
|
||||
--config_path path/to/config.json \\
|
||||
--out_path output/path/speech.wav
|
||||
```
|
||||
|
||||
- Run your own TTS and Vocoder models:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
||||
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
|
||||
```sh
|
||||
tts --text "Text for TTS" \\
|
||||
--model_path path/to/model.pth \\
|
||||
--config_path path/to/config.json \\
|
||||
--out_path output/path/speech.wav \\
|
||||
--vocoder_path path/to/vocoder.pth \\
|
||||
--vocoder_config_path path/to/vocoder_config.json
|
||||
```
|
||||
|
||||
#### Multi-speaker Models
|
||||
|
||||
- List the available speakers and choose a <speaker_id> among them:
|
||||
- List the available speakers and choose a `<speaker_id>` among them:
|
||||
|
||||
```
|
||||
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
||||
```sh
|
||||
tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
||||
```
|
||||
|
||||
- Run the multi-speaker TTS model with the target speaker ID:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
||||
```sh
|
||||
tts --text "Text for TTS." --out_path output/path/speech.wav \\
|
||||
--model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
||||
```
|
||||
|
||||
- Run your own multi-speaker TTS model:
|
||||
|
||||
```
|
||||
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
||||
```sh
|
||||
tts --text "Text for TTS" --out_path output/path/speech.wav \\
|
||||
--model_path path/to/model.pth --config_path path/to/config.json \\
|
||||
--speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
||||
```
|
||||
|
||||
### Voice Conversion Models
|
||||
#### Voice Conversion Models
|
||||
|
||||
```
|
||||
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
||||
```sh
|
||||
tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" \\
|
||||
--source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
||||
```
|
||||
"""
|
||||
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
---
|
||||
hide-toc: true
|
||||
---
|
||||
|
||||
```{include} ../../README.md
|
||||
:relative-images:
|
||||
:end-before: <!-- start installation -->
|
||||
```
|
||||
----
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
|
|
@ -1,199 +1,21 @@
|
|||
(synthesizing_speech)=
|
||||
# Synthesizing speech
|
||||
|
||||
First, you need to install TTS. We recommend using PyPi. You need to call the command below:
|
||||
## Overview
|
||||
|
||||
```bash
|
||||
$ pip install coqui-tts
|
||||
Coqui TTS provides three main methods for inference:
|
||||
|
||||
1. 🐍Python API
|
||||
2. TTS command line interface (CLI)
|
||||
3. [Local demo server](server.md)
|
||||
|
||||
```{include} ../../README.md
|
||||
:start-after: <!-- start inference -->
|
||||
```
|
||||
|
||||
After the installation, 2 terminal commands are available.
|
||||
|
||||
1. TTS Command Line Interface (CLI). - `tts`
|
||||
2. Local Demo Server. - `tts-server`
|
||||
3. In 🐍Python. - `from TTS.api import TTS`
|
||||
|
||||
## On the Commandline - `tts`
|
||||

|
||||
|
||||
After the installation, 🐸TTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under 🐸TTS.
|
||||
|
||||
Listing released 🐸TTS models.
|
||||
|
||||
```bash
|
||||
tts --list_models
|
||||
```
|
||||
|
||||
Run a TTS model, from the release models list, with its default vocoder. (Simply copy and paste the full model names from the list as arguments for the command below.)
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "<type>/<language>/<dataset>/<model_name>" \
|
||||
--out_path folder/to/save/output.wav
|
||||
```
|
||||
|
||||
Run a tts and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "tts_models/<language>/<dataset>/<model_name>" \
|
||||
--vocoder_name "vocoder_models/<language>/<dataset>/<model_name>" \
|
||||
--out_path folder/to/save/output.wav
|
||||
```
|
||||
|
||||
Run your own TTS model (Using Griffin-Lim Vocoder)
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
--model_path path/to/model.pth \
|
||||
--config_path path/to/config.json \
|
||||
--out_path folder/to/save/output.wav
|
||||
```
|
||||
|
||||
Run your own TTS and Vocoder models
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
--config_path path/to/config.json \
|
||||
--model_path path/to/model.pth \
|
||||
--out_path folder/to/save/output.wav \
|
||||
--vocoder_path path/to/vocoder.pth \
|
||||
--vocoder_config_path path/to/vocoder_config.json
|
||||
```
|
||||
|
||||
Run a multi-speaker TTS model from the released models list.
|
||||
|
||||
```bash
|
||||
tts --model_name "tts_models/<language>/<dataset>/<model_name>" --list_speaker_idxs # list the possible speaker IDs.
|
||||
tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "tts_models/<language>/<dataset>/<model_name>" --speaker_idx "<speaker_id>"
|
||||
```
|
||||
|
||||
Run a released voice conversion model
|
||||
|
||||
```bash
|
||||
tts --model_name "voice_conversion/<language>/<dataset>/<model_name>"
|
||||
--source_wav "my/source/speaker/audio.wav"
|
||||
--target_wav "my/target/speaker/audio.wav"
|
||||
--out_path folder/to/save/output.wav
|
||||
```
|
||||
|
||||
**Note:** You can use ```./TTS/bin/synthesize.py``` if you prefer running ```tts``` from the TTS project folder.
|
||||
|
||||
## On the Demo Server - `tts-server`
|
||||
|
||||
<!-- <img src="https://raw.githubusercontent.com/idiap/coqui-ai-TTS/main/images/demo_server.gif" height="56"/> -->
|
||||

|
||||
|
||||
You can boot up a demo 🐸TTS server to run an inference with your models (make
|
||||
sure to install the additional dependencies with `pip install coqui-tts[server]`).
|
||||
Note that the server is not optimized for performance and does not support all
|
||||
Coqui models yet.
|
||||
|
||||
The demo server provides pretty much the same interface as the CLI command.
|
||||
|
||||
```bash
|
||||
tts-server -h # see the help
|
||||
tts-server --list_models # list the available models.
|
||||
```
|
||||
|
||||
Run a TTS model, from the release models list, with its default vocoder.
|
||||
If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize
|
||||
speech.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
||||
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
## Python 🐸TTS API
|
||||
|
||||
You can run a multi-speaker and multi-lingual model in Python as
|
||||
|
||||
```python
|
||||
import torch
|
||||
from TTS.api import TTS
|
||||
|
||||
# Get device
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# List available 🐸TTS models
|
||||
print(TTS().list_models())
|
||||
|
||||
# Init TTS
|
||||
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
||||
|
||||
# Run TTS
|
||||
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
||||
# Text to speech list of amplitude values as output
|
||||
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
||||
# Text to speech to a file
|
||||
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
```
|
||||
|
||||
### Single speaker model.
|
||||
|
||||
```python
|
||||
# Init TTS with the target model name
|
||||
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False)
|
||||
# Run TTS
|
||||
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
|
||||
```
|
||||
|
||||
### Voice cloning with YourTTS in English, French and Portuguese:
|
||||
|
||||
```python
|
||||
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to("cuda")
|
||||
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="output.wav")
|
||||
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="output.wav")
|
||||
```
|
||||
|
||||
### Voice conversion from the speaker of `source_wav` to the speaker of `target_wav`
|
||||
|
||||
```python
|
||||
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
|
||||
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
|
||||
```
|
||||
|
||||
### Voice cloning by combining single speaker TTS model with the voice conversion model.
|
||||
|
||||
This way, you can clone voices by using any model in 🐸TTS.
|
||||
|
||||
```python
|
||||
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
|
||||
tts.tts_with_vc_to_file(
|
||||
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
||||
speaker_wav="target/speaker.wav",
|
||||
file_path="ouptut.wav"
|
||||
)
|
||||
```
|
||||
|
||||
### Text to speech using **Fairseq models in ~1100 languages** 🤯.
|
||||
For these models use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`.
|
||||
|
||||
You can find the list of language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
|
||||
|
||||
```python
|
||||
from TTS.api import TTS
|
||||
api = TTS(model_name="tts_models/eng/fairseq/vits").to("cuda")
|
||||
api.tts_to_file("This is a test.", file_path="output.wav")
|
||||
|
||||
# TTS with on the fly voice conversion
|
||||
api = TTS("tts_models/deu/fairseq/vits")
|
||||
api.tts_with_vc_to_file(
|
||||
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
||||
speaker_wav="target/speaker.wav",
|
||||
file_path="ouptut.wav"
|
||||
)
|
||||
```
|
||||
|
||||
```{toctree}
|
||||
:hidden:
|
||||
server
|
||||
marytts
|
||||
```
|
||||
|
|
|
@ -1,36 +1,6 @@
|
|||
# Installation
|
||||
|
||||
🐸TTS supports python >=3.9 <3.13.0 and was tested on Ubuntu 24.04, but should
|
||||
also run on Mac and Windows.
|
||||
|
||||
## Using `pip`
|
||||
|
||||
`pip` is recommended if you want to use 🐸TTS only for inference.
|
||||
|
||||
You can install from PyPI as follows:
|
||||
|
||||
```bash
|
||||
pip install coqui-tts # from PyPI
|
||||
```
|
||||
|
||||
Or install from Github:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/idiap/coqui-ai-TTS # from Github
|
||||
```
|
||||
|
||||
## Installing From Source
|
||||
|
||||
This is recommended for development and more control over 🐸TTS.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/idiap/coqui-ai-TTS
|
||||
cd coqui-ai-TTS
|
||||
make system-deps # only on Linux systems.
|
||||
|
||||
# Install package and optional extras
|
||||
make install
|
||||
|
||||
# Same as above + dev dependencies and pre-commit
|
||||
make install_dev
|
||||
```{include} ../../README.md
|
||||
:start-after: <!-- start installation -->
|
||||
:end-before: <!-- end installation -->
|
||||
```
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
# Demo server
|
||||
|
||||

|
||||
|
||||
You can boot up a demo 🐸TTS server to run an inference with your models (make
|
||||
sure to install the additional dependencies with `pip install coqui-tts[server]`).
|
||||
Note that the server is not optimized for performance and does not support all
|
||||
Coqui models yet.
|
||||
|
||||
The demo server provides pretty much the same interface as the CLI command.
|
||||
|
||||
```bash
|
||||
tts-server -h # see the help
|
||||
tts-server --list_models # list the available models.
|
||||
```
|
||||
|
||||
Run a TTS model, from the release models list, with its default vocoder.
|
||||
If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize
|
||||
speech.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
||||
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
|
@ -22,8 +22,12 @@ def sync_readme():
|
|||
new_content = replace_between_markers(orig_content, "tts-readme", description.strip())
|
||||
if args.check:
|
||||
if orig_content != new_content:
|
||||
print("README.md is out of sync; please edit TTS/bin/TTS_README.md and run scripts/sync_readme.py")
|
||||
print(
|
||||
"README.md is out of sync; please reconcile README.md and TTS/bin/synthesize.py and run scripts/sync_readme.py"
|
||||
)
|
||||
exit(42)
|
||||
print("All good, files in sync")
|
||||
exit(0)
|
||||
readme_path.write_text(new_content)
|
||||
print("Updated README.md")
|
||||
|
||||
|
|
Loading…
Reference in New Issue