masked loss

This commit is contained in:
Eren Golge 2018-03-22 14:06:54 -07:00
parent b1beb1f876
commit e4a0eec77e
1 changed files with 48 additions and 0 deletions

48
layers/losses.py Normal file
View File

@ -0,0 +1,48 @@
import torch
from torch import functional
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def _sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.range(0, max_len - 1).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_range_expand = Variable(seq_range_expand)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
def L1LossMasked(input, target, length):
"""
Args:
logits: A Variable containing a FloatTensor of size
(batch, max_len, num_classes) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Returns:
loss: An average loss value masked by the length.
"""
# logits_flat: (batch * max_len, num_classes)
input = input.view(-1, input.size(-1))
# target_flat: (batch * max_len, 1)
target_flat = target.view(-1, 1)
# losses_flat: (batch * max_len, 1)
losees_flat = functional.l1_loss(input, target, size_average=False,
reduce=False)
# losses: (batch, max_len)
losses = losses_flat.view(*target.size())
# mask: (batch, max_len)
mask = _sequence_mask(sequence_length=length, max_len=target.size(1))
losses = losses * mask.float()
loss = losses.sum() / length.float().sum()
return loss