isort all imports

This commit is contained in:
Eren Gölge 2021-04-09 00:45:20 +02:00
parent 0e79fa86ad
commit e5b9607bc3
114 changed files with 248 additions and 216 deletions

View File

@ -1,12 +1,13 @@
import argparse import argparse
import importlib import importlib
import os import os
from argparse import RawTextHelpFormatter
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm import tqdm from tqdm import tqdm
from argparse import RawTextHelpFormatter
from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.utils.generic_utils import setup_model from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import load_checkpoint from TTS.tts.utils.io import load_checkpoint
@ -14,7 +15,6 @@ from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config from TTS.utils.io import load_config
if __name__ == "__main__": if __name__ == "__main__":
# pylint: disable=bad-option-value # pylint: disable=bad-option-value
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(

View File

@ -3,14 +3,14 @@ import glob
import os import os
import numpy as np import numpy as np
import torch
from tqdm import tqdm from tqdm import tqdm
import torch
from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.utils.speakers import save_speaker_mapping
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config from TTS.utils.io import load_config
from TTS.tts.utils.speakers import save_speaker_mapping
from TTS.tts.datasets.preprocess import load_meta_data
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.' description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.'

View File

@ -1,16 +1,16 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import os
import glob
import argparse import argparse
import glob
import os
import numpy as np import numpy as np
from tqdm import tqdm from tqdm import tqdm
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.io import load_config
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
def main(): def main():

View File

@ -7,7 +7,6 @@ from TTS.vocoder.tf.utils.generic_utils import setup_generator
from TTS.vocoder.tf.utils.io import load_checkpoint from TTS.vocoder.tf.utils.io import load_checkpoint
from TTS.vocoder.tf.utils.tflite import convert_melgan_to_tflite from TTS.vocoder.tf.utils.tflite import convert_melgan_to_tflite
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--tf_model", type=str, help="Path to target torch model to be converted to TF.") parser.add_argument("--tf_model", type=str, help="Path to target torch model to be converted to TF.")
parser.add_argument("--config_path", type=str, help="Path to config file of torch model.") parser.add_argument("--config_path", type=str, help="Path to config file of torch model.")

View File

@ -1,17 +1,14 @@
import argparse import argparse
from difflib import SequenceMatcher
import os import os
from difflib import SequenceMatcher
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
import torch import torch
from TTS.utils.io import load_config from TTS.utils.io import load_config
from TTS.vocoder.tf.utils.convert_torch_to_tf_utils import ( from TTS.vocoder.tf.utils.convert_torch_to_tf_utils import (compare_torch_tf, convert_tf_name,
compare_torch_tf, transfer_weights_torch_to_tf)
convert_tf_name,
transfer_weights_torch_to_tf,
)
from TTS.vocoder.tf.utils.generic_utils import setup_generator as setup_tf_generator from TTS.vocoder.tf.utils.generic_utils import setup_generator as setup_tf_generator
from TTS.vocoder.tf.utils.io import save_checkpoint from TTS.vocoder.tf.utils.io import save_checkpoint
from TTS.vocoder.utils.generic_utils import setup_generator from TTS.vocoder.utils.generic_utils import setup_generator

View File

@ -2,12 +2,11 @@
import argparse import argparse
from TTS.utils.io import load_config
from TTS.tts.utils.text.symbols import symbols, phonemes
from TTS.tts.tf.utils.generic_utils import setup_model from TTS.tts.tf.utils.generic_utils import setup_model
from TTS.tts.tf.utils.io import load_checkpoint from TTS.tts.tf.utils.io import load_checkpoint
from TTS.tts.tf.utils.tflite import convert_tacotron2_to_tflite from TTS.tts.tf.utils.tflite import convert_tacotron2_to_tflite
from TTS.tts.utils.text.symbols import phonemes, symbols
from TTS.utils.io import load_config
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--tf_model", type=str, help="Path to target torch model to be converted to TF.") parser.add_argument("--tf_model", type=str, help="Path to target torch model to be converted to TF.")

View File

@ -1,12 +1,13 @@
import argparse import argparse
from difflib import SequenceMatcher
import os import os
import sys import sys
from difflib import SequenceMatcher
from pprint import pprint from pprint import pprint
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
import torch import torch
from TTS.tts.tf.models.tacotron2 import Tacotron2 from TTS.tts.tf.models.tacotron2 import Tacotron2
from TTS.tts.tf.utils.convert_torch_to_tf_utils import compare_torch_tf, convert_tf_name, transfer_weights_torch_to_tf from TTS.tts.tf.utils.convert_torch_to_tf_utils import compare_torch_tf, convert_tf_name, transfer_weights_torch_to_tf
from TTS.tts.tf.utils.generic_utils import save_checkpoint from TTS.tts.tf.utils.generic_utils import save_checkpoint

View File

@ -1,12 +1,13 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import os
import sys
import pathlib
import time
import subprocess
import argparse import argparse
import os
import pathlib
import subprocess
import sys
import time
import torch import torch

View File

@ -1,6 +1,6 @@
"""Find all the unique characters in a dataset""" """Find all the unique characters in a dataset"""
import os
import argparse import argparse
import os
from argparse import RawTextHelpFormatter from argparse import RawTextHelpFormatter
from TTS.tts.datasets.preprocess import get_preprocessor_by_name from TTS.tts.datasets.preprocess import get_preprocessor_by_name

View File

@ -1,10 +1,11 @@
import argparse import argparse
import glob import glob
import os import os
import librosa
from distutils.dir_util import copy_tree
from argparse import RawTextHelpFormatter from argparse import RawTextHelpFormatter
from distutils.dir_util import copy_tree
from multiprocessing import Pool from multiprocessing import Pool
import librosa
from tqdm import tqdm from tqdm import tqdm

View File

@ -4,7 +4,6 @@
import argparse import argparse
import sys import sys
from argparse import RawTextHelpFormatter from argparse import RawTextHelpFormatter
# pylint: disable=redefined-outer-name, unused-argument # pylint: disable=redefined-outer-name, unused-argument
from pathlib import Path from pathlib import Path

View File

@ -12,6 +12,7 @@ import torch
from torch.nn.parallel import DistributedDataParallel as DDP_th from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import AlignTTSLoss from TTS.tts.layers.losses import AlignTTSLoss

View File

@ -9,6 +9,7 @@ import traceback
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import MyDataset from TTS.speaker_encoder.dataset import MyDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.model import SpeakerEncoder
@ -16,13 +17,8 @@ from TTS.speaker_encoder.utils.generic_utils import check_config_speaker_encoder
from TTS.speaker_encoder.utils.visual import plot_embeddings from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import ( from TTS.utils.generic_utils import (count_parameters, create_experiment_folder, get_git_branch,
count_parameters, remove_experiment_folder, set_init_dict)
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict,
)
from TTS.utils.io import copy_model_files, load_config from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger from TTS.utils.tensorboard_logger import TensorboardLogger

View File

@ -8,13 +8,11 @@ import traceback
from random import randrange from random import randrange
import torch import torch
# DISTRIBUTED # DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import GlowTTSLoss from TTS.tts.layers.losses import GlowTTSLoss
@ -25,6 +23,7 @@ from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed, reduce_tensor from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict

View File

@ -5,16 +5,15 @@ import os
import sys import sys
import time import time
import traceback import traceback
import numpy as np
from random import randrange from random import randrange
import numpy as np
import torch import torch
from TTS.utils.arguments import parse_arguments, process_args
# DISTRIBUTED # DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import SpeedySpeechLoss from TTS.tts.layers.losses import SpeedySpeechLoss
@ -25,6 +24,7 @@ from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed, reduce_tensor from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict

View File

@ -10,7 +10,7 @@ from random import randrange
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.datasets.preprocess import load_meta_data from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss from TTS.tts.layers.losses import TacotronLoss
@ -21,18 +21,13 @@ from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor from TTS.utils.distribute import DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.radam import RAdam from TTS.utils.radam import RAdam
from TTS.utils.training import ( from TTS.utils.training import (NoamLR, adam_weight_decay, check_update, gradual_training_scheduler, set_weight_decay,
NoamLR, setup_torch_training_env)
adam_weight_decay,
check_update,
gradual_training_scheduler,
set_weight_decay,
setup_torch_training_env,
)
use_cuda, num_gpus = setup_torch_training_env(True, False) use_cuda, num_gpus = setup_torch_training_env(True, False)

View File

@ -9,13 +9,16 @@ import traceback
from inspect import signature from inspect import signature
import torch import torch
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.radam import RAdam from TTS.utils.radam import RAdam
from TTS.utils.training import setup_torch_training_env from TTS.utils.training import setup_torch_training_env
from TTS.vocoder.datasets.gan_dataset import GANDataset from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
@ -23,11 +26,6 @@ from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
from TTS.vocoder.utils.generic_utils import plot_results, setup_discriminator, setup_generator from TTS.vocoder.utils.generic_utils import plot_results, setup_discriminator, setup_generator
from TTS.vocoder.utils.io import save_best_model, save_checkpoint from TTS.vocoder.utils.io import save_best_model, save_checkpoint
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.distribute import init_distributed
use_cuda, num_gpus = setup_torch_training_env(True, True) use_cuda, num_gpus = setup_torch_training_env(True, True)

View File

@ -5,15 +5,15 @@ import os
import sys import sys
import time import time
import traceback import traceback
import numpy as np import numpy as np
import torch import torch
# DISTRIBUTED # DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.optim import Adam from torch.optim import Adam
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed from TTS.utils.distribute import init_distributed

View File

@ -2,33 +2,29 @@
"""Train WaveRNN vocoder model.""" """Train WaveRNN vocoder model."""
import os import os
import sys
import traceback
import time
import random import random
import sys
import time
import traceback
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
# from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.utils.visual import plot_spectrogram from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.radam import RAdam from TTS.utils.radam import RAdam
from TTS.utils.training import setup_torch_training_env from TTS.utils.training import setup_torch_training_env
from TTS.utils.generic_utils import (
KeepAverage,
count_parameters,
remove_experiment_folder,
set_init_dict,
)
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
from TTS.vocoder.utils.generic_utils import setup_generator from TTS.vocoder.utils.generic_utils import setup_generator
from TTS.vocoder.utils.io import save_best_model, save_checkpoint from TTS.vocoder.utils.io import save_best_model, save_checkpoint
# from torch.utils.data.distributed import DistributedSampler
use_cuda, num_gpus = setup_torch_training_env(True, True) use_cuda, num_gpus = setup_torch_training_env(True, True)

View File

@ -6,6 +6,7 @@ import numpy as np
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm import tqdm from tqdm import tqdm
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config from TTS.utils.io import load_config
from TTS.vocoder.datasets.preprocess import load_wav_data from TTS.vocoder.datasets.preprocess import load_wav_data

View File

@ -1,14 +1,15 @@
#!flask/bin/python #!flask/bin/python
import argparse import argparse
import io
import os import os
import sys import sys
import io
from pathlib import Path from pathlib import Path
from flask import Flask, render_template, request, send_file from flask import Flask, render_template, request, send_file
from TTS.utils.synthesizer import Synthesizer
from TTS.utils.manage import ModelManager
from TTS.utils.io import load_config from TTS.utils.io import load_config
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
def create_argparser(): def create_argparser():

View File

@ -3,6 +3,7 @@ import os
import re import re
import torch import torch
from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.utils.generic_utils import check_argument from TTS.utils.generic_utils import check_argument

View File

@ -19,15 +19,17 @@
# pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes # pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes
""" voxceleb 1 & 2 """ """ voxceleb 1 & 2 """
import hashlib
import os import os
import subprocess
import sys import sys
import zipfile import zipfile
import subprocess
import hashlib
import pandas
from absl import logging
import tensorflow as tf
import soundfile as sf import soundfile as sf
import tensorflow as tf
from absl import logging
import pandas
gfile = tf.compat.v1.gfile gfile = tf.compat.v1.gfile

View File

@ -1,7 +1,7 @@
import umap
import numpy as np
import matplotlib import matplotlib
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np
import umap
matplotlib.use("Agg") matplotlib.use("Agg")

View File

@ -7,6 +7,7 @@ import numpy as np
import torch import torch
import tqdm import tqdm
from torch.utils.data import Dataset from torch.utils.data import Dataset
from TTS.tts.utils.data import prepare_data, prepare_stop_target, prepare_tensor from TTS.tts.utils.data import prepare_data, prepare_stop_target, prepare_tensor
from TTS.tts.utils.text import pad_with_eos_bos, phoneme_to_sequence, text_to_sequence from TTS.tts.utils.text import pad_with_eos_bos, phoneme_to_sequence, text_to_sequence

View File

@ -7,6 +7,7 @@ from pathlib import Path
from typing import List from typing import List
from tqdm import tqdm from tqdm import tqdm
from TTS.tts.utils.generic_utils import split_dataset from TTS.tts.utils.generic_utils import split_dataset
#################### ####################

View File

@ -1,6 +1,7 @@
from torch import nn from torch import nn
from TTS.tts.layers.generic.transformer import FFTransformerBlock
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.layers.generic.transformer import FFTransformerBlock
class DurationPredictor(nn.Module): class DurationPredictor(nn.Module):

View File

@ -1,9 +1,10 @@
import torch import torch
from torch import nn from torch import nn
from TTS.tts.layers.generic.res_conv_bn import Conv1dBNBlock, ResidualConv1dBNBlock, Conv1dBN
from TTS.tts.layers.generic.res_conv_bn import Conv1dBN, Conv1dBNBlock, ResidualConv1dBNBlock
from TTS.tts.layers.generic.transformer import FFTransformerBlock
from TTS.tts.layers.generic.wavenet import WNBlocks from TTS.tts.layers.generic.wavenet import WNBlocks
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.layers.generic.transformer import FFTransformerBlock
class WaveNetDecoder(nn.Module): class WaveNetDecoder(nn.Module):

View File

@ -1,8 +1,8 @@
from torch import nn from torch import nn
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock
from TTS.tts.layers.generic.transformer import FFTransformerBlock from TTS.tts.layers.generic.transformer import FFTransformerBlock
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
class RelativePositionTransformerEncoder(nn.Module): class RelativePositionTransformerEncoder(nn.Module):

View File

@ -1,6 +1,6 @@
import torch
import math import math
import torch
from torch import nn from torch import nn

View File

@ -1,8 +1,8 @@
import torch import torch
from torch import nn from torch import nn
from TTS.tts.layers.glow_tts.glow import InvConvNear, CouplingBlock
from TTS.tts.layers.generic.normalization import ActNorm from TTS.tts.layers.generic.normalization import ActNorm
from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNear
def squeeze(x, x_mask=None, num_sqz=2): def squeeze(x, x_mask=None, num_sqz=2):

View File

@ -1,14 +1,15 @@
import math import math
import torch import torch
from torch import nn from torch import nn
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.layers.generic.gated_conv import GatedConvBlock from TTS.tts.layers.generic.gated_conv import GatedConvBlock
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock
from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.utils.generic_utils import sequence_mask
class Encoder(nn.Module): class Encoder(nn.Module):

View File

@ -1,6 +1,7 @@
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
from TTS.tts.layers.generic.wavenet import WN from TTS.tts.layers.generic.wavenet import WN
from ..generic.normalization import LayerNorm from ..generic.normalization import LayerNorm

View File

@ -1,6 +1,7 @@
import numpy as np import numpy as np
import torch import torch
from torch.nn import functional as F from torch.nn import functional as F
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask
try: try:

View File

@ -1,4 +1,5 @@
import math import math
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F

View File

@ -1,8 +1,10 @@
import math import math
import numpy as np import numpy as np
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional from torch.nn import functional
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.utils.ssim import ssim from TTS.tts.utils.ssim import ssim

View File

@ -1,9 +1,9 @@
import torch import torch
from scipy.stats import betabinom
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
from TTS.tts.layers.tacotron.common_layers import Linear from TTS.tts.layers.tacotron.common_layers import Linear
from scipy.stats import betabinom
class LocationLayer(nn.Module): class LocationLayer(nn.Module):

View File

@ -1,8 +1,9 @@
# coding: utf-8 # coding: utf-8
import torch import torch
from torch import nn from torch import nn
from .common_layers import Prenet
from .attentions import init_attn from .attentions import init_attn
from .common_layers import Prenet
class BatchNormConv1d(nn.Module): class BatchNormConv1d(nn.Module):

View File

@ -1,8 +1,10 @@
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
from .common_layers import Prenet, Linear
from .attentions import init_attn from .attentions import init_attn
from .common_layers import Linear, Prenet
# NOTE: linter has a problem with the current TF release # NOTE: linter has a problem with the current TF release
# pylint: disable=no-value-for-parameter # pylint: disable=no-value-for-parameter

View File

@ -1,12 +1,13 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.layers.align_tts.mdn import MDNBlock
from TTS.tts.layers.feed_forward.decoder import Decoder
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.layers.glow_tts.monotonic_align import generate_path, maximum_path from TTS.tts.layers.glow_tts.monotonic_align import generate_path, maximum_path
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.align_tts.mdn import MDNBlock
from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.feed_forward.decoder import Decoder
class AlignTTS(nn.Module): class AlignTTS(nn.Module):

View File

@ -1,12 +1,13 @@
import math import math
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
from TTS.tts.layers.glow_tts.encoder import Encoder
from TTS.tts.layers.glow_tts.decoder import Decoder from TTS.tts.layers.glow_tts.decoder import Decoder
from TTS.tts.layers.glow_tts.encoder import Encoder
from TTS.tts.layers.glow_tts.monotonic_align import generate_path, maximum_path
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.glow_tts.monotonic_align import maximum_path, generate_path
class GlowTTS(nn.Module): class GlowTTS(nn.Module):

View File

@ -1,11 +1,12 @@
import torch import torch
from torch import nn from torch import nn
from TTS.tts.layers.feed_forward.decoder import Decoder from TTS.tts.layers.feed_forward.decoder import Decoder
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.layers.feed_forward.encoder import Encoder from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.layers.glow_tts.monotonic_align import generate_path from TTS.tts.layers.glow_tts.monotonic_align import generate_path
from TTS.tts.utils.generic_utils import sequence_mask
class SpeedySpeech(nn.Module): class SpeedySpeech(nn.Module):

View File

@ -5,6 +5,7 @@ from TTS.tts.layers.tacotron.gst_layers import GST
from TTS.tts.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet from TTS.tts.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet
from TTS.tts.models.tacotron_abstract import TacotronAbstract from TTS.tts.models.tacotron_abstract import TacotronAbstract
# TODO: match function arguments with tacotron # TODO: match function arguments with tacotron
class Tacotron2(TacotronAbstract): class Tacotron2(TacotronAbstract):
"""Tacotron2 as in https://arxiv.org/abs/1712.05884 """Tacotron2 as in https://arxiv.org/abs/1712.05884

View File

@ -1,7 +1,8 @@
import tensorflow as tf import tensorflow as tf
from tensorflow import keras from tensorflow import keras
from TTS.tts.tf.layers.tacotron.common_layers import Attention, Prenet
from TTS.tts.tf.utils.tf_utils import shape_list from TTS.tts.tf.utils.tf_utils import shape_list
from TTS.tts.tf.layers.tacotron.common_layers import Prenet, Attention
# NOTE: linter has a problem with the current TF release # NOTE: linter has a problem with the current TF release

View File

@ -1,7 +1,7 @@
import tensorflow as tf import tensorflow as tf
from tensorflow import keras from tensorflow import keras
from TTS.tts.tf.layers.tacotron.tacotron2 import Encoder, Decoder, Postnet from TTS.tts.tf.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet
from TTS.tts.tf.utils.tf_utils import shape_list from TTS.tts.tf.utils.tf_utils import shape_list

View File

@ -1,6 +1,7 @@
import datetime import datetime
import importlib import importlib
import pickle import pickle
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf

View File

@ -1,5 +1,6 @@
import pickle
import datetime import datetime
import pickle
import tensorflow as tf import tensorflow as tf

View File

@ -5,8 +5,8 @@
# This uses Python 3, but it's easy to port to Python 2 by changing # This uses Python 3, but it's easy to port to Python 2 by changing
# strings to u'xx'. # strings to u'xx'.
import re
import itertools import itertools
import re
def _num2chinese(num: str, big=False, simp=True, o=False, twoalt=False) -> str: def _num2chinese(num: str, big=False, simp=True, o=False, twoalt=False) -> str:

View File

@ -1,13 +1,11 @@
from typing import List from typing import List
import jieba
import pypinyin import pypinyin
from .pinyinToPhonemes import PINYIN_DICT from .pinyinToPhonemes import PINYIN_DICT
import jieba
def _chinese_character_to_pinyin(text: str) -> List[str]: def _chinese_character_to_pinyin(text: str) -> List[str]:
pinyins = pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True) pinyins = pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)
pinyins_flat_list = [item for sublist in pinyins for item in sublist] pinyins_flat_list = [item for sublist in pinyins for item in sublist]

View File

@ -1,9 +1,10 @@
import re
import torch
import importlib import importlib
import numpy as np import re
from collections import Counter from collections import Counter
import numpy as np
import torch
from TTS.utils.generic_utils import check_argument from TTS.utils.generic_utils import check_argument

View File

@ -1,8 +1,9 @@
import os
import torch
import datetime import datetime
import os
import pickle as pickle_tts import pickle as pickle_tts
import torch
from TTS.utils.io import RenamingUnpickler from TTS.utils.io import RenamingUnpickler

View File

@ -1,5 +1,5 @@
import os
import json import json
import os
def make_speakers_json_path(out_path): def make_speakers_json_path(out_path):

View File

@ -1,14 +1,16 @@
import os import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import numpy as np
import pkg_resources import pkg_resources
import torch
from .text import phoneme_to_sequence, text_to_sequence
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
installed = {pkg.key for pkg in pkg_resources.working_set} # pylint: disable=not-an-iterable installed = {pkg.key for pkg in pkg_resources.working_set} # pylint: disable=not-an-iterable
if "tensorflow" in installed or "tensorflow-gpu" in installed: if "tensorflow" in installed or "tensorflow-gpu" in installed:
import tensorflow as tf import tensorflow as tf
import torch
import numpy as np
from .text import text_to_sequence, phoneme_to_sequence
def text_to_seqvec(text, CONFIG): def text_to_seqvec(text, CONFIG):

View File

@ -5,10 +5,10 @@ import re
import phonemizer import phonemizer
from packaging import version from packaging import version
from phonemizer.phonemize import phonemize from phonemizer.phonemize import phonemize
from TTS.tts.utils.chinese_mandarin.phonemizer import chinese_text_to_phonemes
from TTS.tts.utils.text import cleaners from TTS.tts.utils.text import cleaners
from TTS.tts.utils.text.symbols import _bos, _eos, _punctuations, make_symbols, phonemes, symbols from TTS.tts.utils.text.symbols import _bos, _eos, _punctuations, make_symbols, phonemes, symbols
from TTS.tts.utils.chinese_mandarin.phonemizer import chinese_text_to_phonemes
# pylint: disable=unnecessary-comprehension # pylint: disable=unnecessary-comprehension
# Mappings from symbol to numeric ID and vice versa: # Mappings from symbol to numeric ID and vice versa:

View File

@ -11,12 +11,14 @@ hyperparameter. Some cleaners are English-specific. You'll typically want to use
""" """
import re import re
from unidecode import unidecode from unidecode import unidecode
from .number_norm import normalize_numbers
from .abbreviations import abbreviations_en, abbreviations_fr
from .time import expand_time_english
from TTS.tts.utils.chinese_mandarin.numbers import replace_numbers_to_characters_in_text from TTS.tts.utils.chinese_mandarin.numbers import replace_numbers_to_characters_in_text
from .abbreviations import abbreviations_en, abbreviations_fr
from .number_norm import normalize_numbers
from .time import expand_time_english
# Regular expression matching whitespace: # Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+") _whitespace_re = re.compile(r"\s+")

View File

@ -1,9 +1,10 @@
""" from https://github.com/keithito/tacotron """ """ from https://github.com/keithito/tacotron """
import inflect
import re import re
from typing import Dict from typing import Dict
import inflect
_inflect = inflect.engine() _inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") _comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") _decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")

View File

@ -1,4 +1,5 @@
import re import re
import inflect import inflect
_inflect = inflect.engine() _inflect = inflect.engine()

View File

@ -1,12 +1,13 @@
import librosa import librosa
import matplotlib import matplotlib
import matplotlib.pyplot as plt
import numpy as np import numpy as np
import torch import torch
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from TTS.tts.utils.text import phoneme_to_sequence, sequence_to_phoneme from TTS.tts.utils.text import phoneme_to_sequence, sequence_to_phoneme
matplotlib.use("Agg")
def plot_alignment(alignment, info=None, fig_size=(16, 10), title=None, output_fig=False): def plot_alignment(alignment, info=None, fig_size=(16, 10), title=None, output_fig=False):
if isinstance(alignment, torch.Tensor): if isinstance(alignment, torch.Tensor):

View File

@ -4,11 +4,12 @@
import argparse import argparse
import glob import glob
import json
import os import os
import re import re
import json
import torch import torch
from TTS.tts.utils.text.symbols import parse_symbols from TTS.tts.utils.text.symbols import parse_symbols
from TTS.utils.console_logger import ConsoleLogger from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import create_experiment_folder, get_git_branch from TTS.utils.generic_utils import create_experiment_folder, get_git_branch

View File

@ -1,12 +1,13 @@
import librosa import librosa
import soundfile as sf
import numpy as np import numpy as np
import scipy.io.wavfile import scipy.io.wavfile
import scipy.signal import scipy.signal
import soundfile as sf
from TTS.tts.utils.data import StandardScaler
# import pyworld as pw # import pyworld as pw
from TTS.tts.utils.data import StandardScaler
# pylint: disable=too-many-public-methods # pylint: disable=too-many-public-methods
class AudioProcessor(object): class AudioProcessor(object):

View File

@ -1,6 +1,6 @@
import datetime import datetime
from TTS.utils.io import AttrDict
from TTS.utils.io import AttrDict
tcolors = AttrDict( tcolors = AttrDict(
{ {

View File

@ -1,10 +1,11 @@
import os
import re
import json import json
import yaml import os
import pickle as pickle_tts import pickle as pickle_tts
import re
from shutil import copyfile from shutil import copyfile
import yaml
class RenamingUnpickler(pickle_tts.Unpickler): class RenamingUnpickler(pickle_tts.Unpickler):
"""Overload default pickler to solve module renaming problem""" """Overload default pickler to solve module renaming problem"""

View File

@ -7,6 +7,7 @@ from shutil import copyfile
import gdown import gdown
import requests import requests
from TTS.utils.generic_utils import get_user_data_dir from TTS.utils.generic_utils import get_user_data_dir
from TTS.utils.io import load_config from TTS.utils.io import load_config

View File

@ -1,6 +1,7 @@
# from https://github.com/LiyuanLucasLiu/RAdam # from https://github.com/LiyuanLucasLiu/RAdam
import math import math
import torch import torch
from torch.optim.optimizer import Optimizer from torch.optim.optimizer import Optimizer

View File

@ -1,19 +1,18 @@
import time import time
import numpy as np import numpy as np
import torch
import pysbd import pysbd
import torch
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.tts.utils.generic_utils import setup_model from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.speakers import load_speaker_mapping from TTS.tts.utils.speakers import load_speaker_mapping
from TTS.vocoder.utils.generic_utils import setup_generator, interpolate_vocoder_input
# pylint: disable=unused-wildcard-import # pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import # pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import synthesis, trim_silence from TTS.tts.utils.synthesis import synthesis, trim_silence
from TTS.tts.utils.text import make_symbols, phonemes, symbols from TTS.tts.utils.text import make_symbols, phonemes, symbols
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input, setup_generator
class Synthesizer(object): class Synthesizer(object):

View File

@ -1,4 +1,5 @@
import traceback import traceback
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter

View File

@ -1,5 +1,5 @@
import torch
import numpy as np import numpy as np
import torch
def setup_torch_training_env(cudnn_enable, cudnn_benchmark): def setup_torch_training_env(cudnn_enable, cudnn_benchmark):

View File

@ -1,11 +1,12 @@
import os
import glob import glob
import torch import os
import random import random
import numpy as np
from torch.utils.data import Dataset
from multiprocessing import Manager from multiprocessing import Manager
import numpy as np
import torch
from torch.utils.data import Dataset
class GANDataset(Dataset): class GANDataset(Dataset):
""" """

View File

@ -1,9 +1,9 @@
import glob import glob
import os import os
from pathlib import Path from pathlib import Path
from tqdm import tqdm
import numpy as np import numpy as np
from tqdm import tqdm
def preprocess_wav_files(out_path, config, ap): def preprocess_wav_files(out_path, config, ap):

View File

@ -1,11 +1,12 @@
import os
import glob import glob
import torch import os
import random import random
import numpy as np
from torch.utils.data import Dataset
from multiprocessing import Manager from multiprocessing import Manager
import numpy as np
import torch
from torch.utils.data import Dataset
class WaveGradDataset(Dataset): class WaveGradDataset(Dataset):
""" """

View File

@ -1,5 +1,5 @@
import torch
import numpy as np import numpy as np
import torch
from torch.utils.data import Dataset from torch.utils.data import Dataset

View File

@ -1,5 +1,5 @@
import torch
import librosa import librosa
import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F

View File

@ -1,7 +1,6 @@
import numpy as np import numpy as np
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from scipy import signal as sig from scipy import signal as sig

View File

@ -1,7 +1,7 @@
import torch import torch
from TTS.vocoder.models.melgan_generator import MelganGenerator
from TTS.vocoder.layers.pqmf import PQMF from TTS.vocoder.layers.pqmf import PQMF
from TTS.vocoder.models.melgan_generator import MelganGenerator
class MultibandMelganGenerator(MelganGenerator): class MultibandMelganGenerator(MelganGenerator):

View File

@ -1,4 +1,5 @@
import math import math
import torch import torch
from torch import nn from torch import nn

View File

@ -1,4 +1,5 @@
import math import math
import numpy as np import numpy as np
import torch import torch

View File

@ -3,7 +3,7 @@ import torch
from torch import nn from torch import nn
from torch.nn.utils import weight_norm from torch.nn.utils import weight_norm
from ..layers.wavegrad import DBlock, FiLM, UBlock, Conv1d from ..layers.wavegrad import Conv1d, DBlock, FiLM, UBlock
class Wavegrad(nn.Module): class Wavegrad(nn.Module):

View File

@ -1,16 +1,14 @@
import sys import sys
import time
import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
import numpy as np
import torch.nn.functional as F import torch.nn.functional as F
import time
# fix this # fix this
from TTS.utils.audio import AudioProcessor as ap from TTS.utils.audio import AudioProcessor as ap
from TTS.vocoder.utils.distribution import ( from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian
sample_from_gaussian,
sample_from_discretized_mix_logistic,
)
def stream(string, variables): def stream(string, variables):

View File

@ -1,6 +1,5 @@
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from scipy import signal as sig from scipy import signal as sig

View File

@ -1,11 +1,13 @@
import logging import logging
import os import os
import tensorflow as tf
from TTS.vocoder.tf.layers.melgan import ReflectionPad1d, ResidualStack
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # FATAL os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # FATAL
logging.getLogger("tensorflow").setLevel(logging.FATAL) logging.getLogger("tensorflow").setLevel(logging.FATAL)
import tensorflow as tf
from TTS.vocoder.tf.layers.melgan import ResidualStack, ReflectionPad1d
# pylint: disable=too-many-ancestors # pylint: disable=too-many-ancestors

View File

@ -1,7 +1,8 @@
import tensorflow as tf import tensorflow as tf
from TTS.vocoder.tf.models.melgan_generator import MelganGenerator
from TTS.vocoder.tf.layers.pqmf import PQMF from TTS.vocoder.tf.layers.pqmf import PQMF
from TTS.vocoder.tf.models.melgan_generator import MelganGenerator
# pylint: disable=too-many-ancestors # pylint: disable=too-many-ancestors
# pylint: disable=abstract-method # pylint: disable=abstract-method

View File

@ -1,5 +1,5 @@
import re
import importlib import importlib
import re
def to_camel(text): def to_camel(text):

View File

@ -1,5 +1,6 @@
import datetime import datetime
import pickle import pickle
import tensorflow as tf import tensorflow as tf

View File

@ -1,8 +1,9 @@
import numpy as np
import math import math
import numpy as np
import torch import torch
from torch.distributions.normal import Normal
import torch.nn.functional as F import torch.nn.functional as F
from torch.distributions.normal import Normal
def gaussian_loss(y_hat, y, log_std_min=-7.0): def gaussian_loss(y_hat, y, log_std_min=-7.0):

View File

@ -1,7 +1,8 @@
import re
import torch
import importlib import importlib
import re
import numpy as np import numpy as np
import torch
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from TTS.tts.utils.visual import plot_spectrogram from TTS.tts.utils.visual import plot_spectrogram

View File

@ -1,9 +1,10 @@
import os
import glob
import torch
import datetime import datetime
import glob
import os
import pickle as pickle_tts import pickle as pickle_tts
import torch
from TTS.utils.io import RenamingUnpickler from TTS.utils.io import RenamingUnpickler

View File

@ -1,8 +1,8 @@
dependencies = ['torch', 'gdown', 'pysbd', 'phonemizer', 'unidecode', 'pypinyin'] # apt install espeak-ng dependencies = ['torch', 'gdown', 'pysbd', 'phonemizer', 'unidecode', 'pypinyin'] # apt install espeak-ng
import torch import torch
from TTS.utils.synthesizer import Synthesizer
from TTS.utils.manage import ModelManager from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
def tts(model_name='tts_models/en/ljspeech/tacotron2-DCA', vocoder_name=None, use_cuda=False): def tts(model_name='tts_models/en/ljspeech/tacotron2-DCA', vocoder_name=None, use_cuda=False):

View File

@ -1,14 +1,16 @@
# visualisation tools for mimic2 # visualisation tools for mimic2
import matplotlib.pyplot as plt
from statistics import stdev, mode, mean, median
from statistics import StatisticsError
import argparse import argparse
import os
import csv import csv
import seaborn as sns import os
import random import random
from statistics import StatisticsError, mean, median, mode, stdev
import matplotlib.pyplot as plt
import seaborn as sns
from text.cmudict import CMUDict from text.cmudict import CMUDict
def get_audio_seconds(frames): def get_audio_seconds(frames):
return (frames*12.5)/1000 return (frames*12.5)/1000

View File

@ -8,9 +8,8 @@ from distutils.version import LooseVersion
import numpy import numpy
import setuptools.command.build_py import setuptools.command.build_py
import setuptools.command.develop import setuptools.command.develop
from setuptools import setup, Extension, find_packages
from Cython.Build import cythonize from Cython.Build import cythonize
from setuptools import Extension, find_packages, setup
if LooseVersion(sys.version) < LooseVersion("3.6") or LooseVersion(sys.version) > LooseVersion("3.9"): if LooseVersion(sys.version) < LooseVersion("3.6") or LooseVersion(sys.version) > LooseVersion("3.9"):
raise RuntimeError( raise RuntimeError(

View File

@ -2,7 +2,6 @@ import os
import unittest import unittest
from tests import get_tests_input_path, get_tests_output_path, get_tests_path from tests import get_tests_input_path, get_tests_output_path, get_tests_path
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config from TTS.utils.io import load_config

View File

@ -1,4 +1,5 @@
import torch import torch
from TTS.tts.layers.feed_forward.decoder import Decoder from TTS.tts.layers.feed_forward.decoder import Decoder
from TTS.tts.layers.feed_forward.encoder import Encoder from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask

View File

@ -3,13 +3,13 @@ import os
import unittest import unittest
import torch import torch
from tests import get_tests_input_path
from torch import optim from torch import optim
from tests import get_tests_input_path
from TTS.tts.layers.losses import GlowTTSLoss from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.models.glow_tts import GlowTTS from TTS.tts.models.glow_tts import GlowTTS
from TTS.utils.io import load_config
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
#pylint: disable=unused-variable #pylint: disable=unused-variable

View File

@ -1,8 +1,9 @@
import unittest import unittest
import torch as T import torch as T
from TTS.tts.layers.tacotron.tacotron import Prenet, CBHG, Decoder, Encoder
from TTS.tts.layers.losses import L1LossMasked, SSIMLoss from TTS.tts.layers.losses import L1LossMasked, SSIMLoss
from TTS.tts.layers.tacotron.tacotron import CBHG, Decoder, Encoder, Prenet
from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.generic_utils import sequence_mask
# pylint: disable=unused-variable # pylint: disable=unused-variable

View File

@ -4,9 +4,9 @@ import unittest
import numpy as np import numpy as np
import torch import torch
from tests import get_tests_input_path, get_tests_output_path
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tests import get_tests_input_path, get_tests_output_path
from TTS.tts.datasets import TTSDataset from TTS.tts.datasets import TTSDataset
from TTS.tts.datasets.preprocess import ljspeech from TTS.tts.datasets.preprocess import ljspeech
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor

View File

@ -1,7 +1,7 @@
import unittest
import os import os
from tests import get_tests_input_path import unittest
from tests import get_tests_input_path
from TTS.tts.datasets.preprocess import common_voice from TTS.tts.datasets.preprocess import common_voice

View File

@ -2,9 +2,9 @@ import os
import unittest import unittest
import torch as T import torch as T
from tests import get_tests_input_path
from TTS.speaker_encoder.losses import GE2ELoss, AngleProtoLoss from tests import get_tests_input_path
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.utils.io import load_config from TTS.utils.io import load_config

View File

@ -1,8 +1,8 @@
import torch import torch
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.models.speedy_speech import SpeedySpeech
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.models.speedy_speech import SpeedySpeech
from TTS.tts.utils.generic_utils import sequence_mask
use_cuda = torch.cuda.is_available() use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

View File

@ -2,6 +2,7 @@ import unittest
from TTS.tts.utils.text import phonemes from TTS.tts.utils.text import phonemes
class SymbolsTest(unittest.TestCase): class SymbolsTest(unittest.TestCase):
def test_uniqueness(self): #pylint: disable=no-self-use def test_uniqueness(self): #pylint: disable=no-self-use
assert sorted(phonemes) == sorted(list(set(phonemes))), " {} vs {} ".format(len(phonemes), len(set(phonemes))) assert sorted(phonemes) == sorted(list(set(phonemes))), " {} vs {} ".format(len(phonemes), len(set(phonemes)))

View File

@ -2,11 +2,11 @@ import os
import unittest import unittest
from tests import get_tests_input_path, get_tests_output_path from tests import get_tests_input_path, get_tests_output_path
from TTS.utils.synthesizer import Synthesizer
from TTS.tts.utils.generic_utils import setup_model from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_checkpoint from TTS.tts.utils.io import save_checkpoint
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.utils.io import load_config from TTS.utils.io import load_config
from TTS.utils.synthesizer import Synthesizer
class SynthesizerTest(unittest.TestCase): class SynthesizerTest(unittest.TestCase):

View File

@ -3,13 +3,13 @@ import os
import unittest import unittest
import torch import torch
from tests import get_tests_input_path
from torch import nn, optim from torch import nn, optim
from tests import get_tests_input_path
from TTS.tts.layers.losses import MSELossMasked from TTS.tts.layers.losses import MSELossMasked
from TTS.tts.models.tacotron2 import Tacotron2 from TTS.tts.models.tacotron2 import Tacotron2
from TTS.utils.io import load_config
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
#pylint: disable=unused-variable #pylint: disable=unused-variable

Some files were not shown because too many files have changed in this diff Show More