graves attention as in melnet paper

This commit is contained in:
root 2020-01-14 13:22:23 +01:00
parent 5e148038be
commit e5bf2719bd
2 changed files with 17 additions and 9 deletions

View File

@ -131,8 +131,8 @@ class GravesAttention(nn.Module):
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10)
def init_states(self, inputs):
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]+1).to(inputs.device) + 0.5
if self.J is None or inputs.shape[1]+1 > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]+2).to(inputs.device) + 0.5
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
@ -160,24 +160,25 @@ class GravesAttention(nn.Module):
# attention GMM parameters
sig_t = torch.nn.functional.softplus(b_t) + self.eps
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
g_t = torch.softmax(g_t, dim=-1) / sig_t + self.eps
j = self.J[:inputs.size(1)+1]
# attention weights
phi_t = g_t.unsqueeze(-1) * torch.exp(-0.5 * (mu_t.unsqueeze(-1) - j)**2 / (sig_t.unsqueeze(-1)**2))
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.exp((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1))))
# discritize attention weights
alpha_t = self.COEF * torch.sum(phi_t, 1)
alpha_t = torch.sum(phi_t, 1)
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1]
alpha_t[alpha_t == 0] = 1e-8
# apply masking
if mask is not None:
alpha_t.data.masked_fill_(~mask, self._mask_value)
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
# for better visualization
# self.attention_weights = torch.clamp(alpha_t, min=0)
self.attention_weights = alpha_t
self.mu_prev = mu_t
return context
@ -350,7 +351,7 @@ class OriginalAttention(nn.Module):
if self.forward_attn:
alignment = self.apply_forward_attention(alignment)
self.alpha = alignment
context = torch.bmm(alignment.unsqueeze(1), inputs)
context = context.squeeze(1)
self.attention_weights = alignment

View File

@ -1,11 +1,18 @@
import torch
def alignment_diagonal_score(alignments):
def alignment_diagonal_score(alignments, binary=False):
"""
Compute how diagonal alignment predictions are. It is useful
to measure the alignment consistency of a model
Args:
alignments (torch.Tensor): batch of alignments.
binary (bool): if True, ignore scores and consider attention
as a binary mask.
Shape:
alignments : batch x decoder_steps x encoder_steps
"""
return alignments.max(dim=1)[0].mean(dim=1).mean(dim=0).item()
maxs = alignments.max(dim=1)[0]
if binary:
maxs[maxs > 0] = 1
return maxs.mean(dim=1).mean(dim=0).item()