diff --git a/utils/data.py b/utils/data.py index 4ff3a4c4..a38092e9 100644 --- a/utils/data.py +++ b/utils/data.py @@ -1,7 +1,7 @@ import numpy as np -def _pad_data(x, length): +def pad_data(x, length): _pad = 0 assert x.ndim == 1 return np.pad(x, (0, length - x.shape[0]), @@ -11,31 +11,7 @@ def _pad_data(x, length): def prepare_data(inputs): max_len = max((len(x) for x in inputs)) - return np.stack([_pad_data(x, max_len) for x in inputs]) - - -def _pad_tensor(x, length): - _pad = 0 - assert x.ndim == 2 - x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode='constant', constant_values=_pad) - return x - -def prepare_tensor(inputs, out_steps): - max_len = max((x.shape[1] for x in inputs)) + 1 # zero-frame - remainder = max_len % out_steps - return np.stack([_pad_tensor(x, max_len + (out_steps - remainder)) for x in inputs]) - - -def _pad_stop_target(x, length): - _pad = 1. - assert x.ndim == 1 - return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad) - - -def prepare_stop_target(inputs, out_steps): - max_len = max((x.shape[0] for x in inputs)) + 1 # zero-frame - remainder = max_len % out_steps - return np.stack([_pad_stop_target(x, max_len + (out_steps - remainder)) for x in inputs]) + return np.stack([pad_data(x, max_len) for x in inputs]) def pad_per_step(inputs, pad_len):