mirror of https://github.com/coqui-ai/TTS.git
update separate stopnet flow to make it faster.
This commit is contained in:
parent
788c8100ba
commit
e62659da94
|
@ -302,13 +302,14 @@ class Decoder(nn.Module):
|
|||
"""
|
||||
|
||||
def __init__(self, in_features, memory_dim, r, memory_size,
|
||||
attn_windowing, attn_norm):
|
||||
attn_windowing, attn_norm, separate_stopnet):
|
||||
super(Decoder, self).__init__()
|
||||
self.r = r
|
||||
self.in_features = in_features
|
||||
self.max_decoder_steps = 500
|
||||
self.memory_size = memory_size if memory_size > 0 else r
|
||||
self.memory_dim = memory_dim
|
||||
self.separate_stopnet = separate_stopnet
|
||||
# memory -> |Prenet| -> processed_memory
|
||||
self.prenet = Prenet(
|
||||
memory_dim * self.memory_size, out_features=[256, 128])
|
||||
|
@ -415,7 +416,10 @@ class Decoder(nn.Module):
|
|||
# predict stop token
|
||||
stopnet_input = torch.cat([decoder_output, output], -1)
|
||||
del decoder_output
|
||||
stop_token = self.stopnet(stopnet_input)
|
||||
if self.separate_stopnet:
|
||||
stop_token = self.stopnet(stopnet_input.detach())
|
||||
else:
|
||||
stop_token = self.stopnet(stopnet_input)
|
||||
return output, stop_token, self.attention
|
||||
|
||||
def _update_memory_queue(self, new_memory):
|
||||
|
|
|
@ -44,7 +44,7 @@ class LinearBN(nn.Module):
|
|||
|
||||
def forward(self, x):
|
||||
out = self.linear_layer(x)
|
||||
if len(out.shape)==3:
|
||||
if len(out.shape) == 3:
|
||||
out = out.permute(1, 2, 0)
|
||||
out = self.bn(out)
|
||||
if len(out.shape) == 3:
|
||||
|
@ -53,7 +53,11 @@ class LinearBN(nn.Module):
|
|||
|
||||
|
||||
class Prenet(nn.Module):
|
||||
def __init__(self, in_features, prenet_type, prenet_dropout, out_features=[256, 256]):
|
||||
def __init__(self,
|
||||
in_features,
|
||||
prenet_type,
|
||||
prenet_dropout,
|
||||
out_features=[256, 256]):
|
||||
super(Prenet, self).__init__()
|
||||
self.prenet_type = prenet_type
|
||||
self.prenet_dropout = prenet_dropout
|
||||
|
@ -64,8 +68,8 @@ class Prenet(nn.Module):
|
|||
for (in_size, out_size) in zip(in_features, out_features)
|
||||
])
|
||||
elif prenet_type == "original":
|
||||
self.layers = nn.ModuleList(
|
||||
[Linear(in_size, out_size, bias=False)
|
||||
self.layers = nn.ModuleList([
|
||||
Linear(in_size, out_size, bias=False)
|
||||
for (in_size, out_size) in zip(in_features, out_features)
|
||||
])
|
||||
|
||||
|
@ -76,7 +80,7 @@ class Prenet(nn.Module):
|
|||
else:
|
||||
x = F.relu(linear(x))
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class ConvBNBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, nonlinear=None):
|
||||
|
@ -121,9 +125,10 @@ class LocationLayer(nn.Module):
|
|||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim, location_attention,
|
||||
attention_location_n_filters, attention_location_kernel_size,
|
||||
windowing, norm, forward_attn, trans_agent):
|
||||
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
||||
location_attention, attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing, norm, forward_attn,
|
||||
trans_agent):
|
||||
super(Attention, self).__init__()
|
||||
self.query_layer = Linear(
|
||||
attention_rnn_dim, attention_dim, bias=False, init_gain='tanh')
|
||||
|
@ -131,11 +136,12 @@ class Attention(nn.Module):
|
|||
embedding_dim, attention_dim, bias=False, init_gain='tanh')
|
||||
self.v = Linear(attention_dim, 1, bias=True)
|
||||
if trans_agent:
|
||||
self.ta = nn.Linear(attention_rnn_dim + embedding_dim, 1, bias=True)
|
||||
self.ta = nn.Linear(
|
||||
attention_rnn_dim + embedding_dim, 1, bias=True)
|
||||
if location_attention:
|
||||
self.location_layer = LocationLayer(attention_location_n_filters,
|
||||
attention_location_kernel_size,
|
||||
attention_dim)
|
||||
self.location_layer = LocationLayer(
|
||||
attention_location_n_filters, attention_location_kernel_size,
|
||||
attention_dim)
|
||||
self._mask_value = -float("inf")
|
||||
self.windowing = windowing
|
||||
self.win_idx = None
|
||||
|
@ -148,11 +154,13 @@ class Attention(nn.Module):
|
|||
self.win_idx = -1
|
||||
self.win_back = 2
|
||||
self.win_front = 6
|
||||
|
||||
|
||||
def init_forward_attn(self, inputs):
|
||||
B = inputs.shape[0]
|
||||
T = inputs.shape[1]
|
||||
self.alpha = torch.cat([torch.ones([B, 1]), torch.zeros([B, T])[:, :-1] + 1e-7 ], dim=1).to(inputs.device)
|
||||
self.alpha = torch.cat(
|
||||
[torch.ones([B, 1]),
|
||||
torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
|
||||
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
|
||||
|
||||
def init_location_attention(self, inputs):
|
||||
|
@ -182,14 +190,13 @@ class Attention(nn.Module):
|
|||
processed_attention_weights = self.location_layer(attention_cat)
|
||||
energies = self.v(
|
||||
torch.tanh(processed_query + processed_attention_weights +
|
||||
processed_inputs))
|
||||
processed_inputs))
|
||||
energies = energies.squeeze(-1)
|
||||
return energies, processed_query
|
||||
|
||||
def get_attention(self, query, processed_inputs):
|
||||
processed_query = self.query_layer(query.unsqueeze(1))
|
||||
energies = self.v(
|
||||
torch.tanh(processed_query +processed_inputs))
|
||||
energies = self.v(torch.tanh(processed_query + processed_inputs))
|
||||
energies = energies.squeeze(-1)
|
||||
return energies, processed_query
|
||||
|
||||
|
@ -210,8 +217,10 @@ class Attention(nn.Module):
|
|||
|
||||
def apply_forward_attention(self, inputs, alignment, query):
|
||||
# forward attention
|
||||
prev_alpha = F.pad(self.alpha[:, :-1].clone(), (1, 0, 0, 0)).to(inputs.device)
|
||||
alpha = (((1-self.u) * self.alpha.clone().to(inputs.device) + self.u * prev_alpha) + 1e-8) * alignment
|
||||
prev_alpha = F.pad(self.alpha[:, :-1].clone(),
|
||||
(1, 0, 0, 0)).to(inputs.device)
|
||||
alpha = (((1 - self.u) * self.alpha.clone().to(inputs.device) +
|
||||
self.u * prev_alpha) + 1e-8) * alignment
|
||||
self.alpha = alpha / alpha.sum(dim=1).unsqueeze(1)
|
||||
# compute context
|
||||
context = torch.bmm(self.alpha.unsqueeze(1), inputs)
|
||||
|
@ -222,8 +231,7 @@ class Attention(nn.Module):
|
|||
self.u = torch.sigmoid(self.ta(ta_input))
|
||||
return context, self.alpha
|
||||
|
||||
def forward(self, attention_hidden_state, inputs, processed_inputs,
|
||||
mask):
|
||||
def forward(self, attention_hidden_state, inputs, processed_inputs, mask):
|
||||
if self.location_attention:
|
||||
attention, processed_query = self.get_location_attention(
|
||||
attention_hidden_state, processed_inputs)
|
||||
|
@ -241,14 +249,15 @@ class Attention(nn.Module):
|
|||
alignment = torch.softmax(attention, dim=-1)
|
||||
elif self.norm == "sigmoid":
|
||||
alignment = torch.sigmoid(attention) / torch.sigmoid(
|
||||
attention).sum(dim=1).unsqueeze(1)
|
||||
attention).sum(dim=1).unsqueeze(1)
|
||||
else:
|
||||
raise RuntimeError("Unknown value for attention norm type")
|
||||
if self.location_attention:
|
||||
self.update_location_attention(alignment)
|
||||
# apply forward attention if enabled
|
||||
if self.forward_attn:
|
||||
context, self.attention_weights = self.apply_forward_attention(inputs, alignment, attention_hidden_state)
|
||||
context, self.attention_weights = self.apply_forward_attention(
|
||||
inputs, alignment, attention_hidden_state)
|
||||
else:
|
||||
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
||||
context = context.squeeze(1)
|
||||
|
@ -321,13 +330,17 @@ class Encoder(nn.Module):
|
|||
outputs, self.rnn_state = self.lstm(x, self.rnn_state)
|
||||
return outputs
|
||||
|
||||
|
||||
# adapted from https://github.com/NVIDIA/tacotron2/
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, in_features, inputs_dim, r, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, location_attn):
|
||||
def __init__(self, in_features, inputs_dim, r, attn_win, attn_norm,
|
||||
prenet_type, prenet_dropout, forward_attn, trans_agent,
|
||||
location_attn, separate_stopnet):
|
||||
super(Decoder, self).__init__()
|
||||
self.mel_channels = inputs_dim
|
||||
self.r = r
|
||||
self.encoder_embedding_dim = in_features
|
||||
self.separate_stopnet = separate_stopnet
|
||||
self.attention_rnn_dim = 1024
|
||||
self.decoder_rnn_dim = 1024
|
||||
self.prenet_dim = 256
|
||||
|
@ -336,14 +349,16 @@ class Decoder(nn.Module):
|
|||
self.p_attention_dropout = 0.1
|
||||
self.p_decoder_dropout = 0.1
|
||||
|
||||
self.prenet = Prenet(self.mel_channels * r, prenet_type, prenet_dropout,
|
||||
self.prenet = Prenet(self.mel_channels * r, prenet_type,
|
||||
prenet_dropout,
|
||||
[self.prenet_dim, self.prenet_dim])
|
||||
|
||||
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features,
|
||||
self.attention_rnn_dim)
|
||||
|
||||
self.attention_layer = Attention(self.attention_rnn_dim, in_features, 128, location_attn,
|
||||
32, 31, attn_win, attn_norm, forward_attn, trans_agent)
|
||||
self.attention_layer = Attention(self.attention_rnn_dim, in_features,
|
||||
128, location_attn, 32, 31, attn_win,
|
||||
attn_norm, forward_attn, trans_agent)
|
||||
|
||||
self.decoder_rnn = nn.LSTMCell(self.attention_rnn_dim + in_features,
|
||||
self.decoder_rnn_dim, 1)
|
||||
|
@ -353,10 +368,11 @@ class Decoder(nn.Module):
|
|||
|
||||
self.stopnet = nn.Sequential(
|
||||
nn.Dropout(0.1),
|
||||
Linear(self.decoder_rnn_dim + self.mel_channels * r,
|
||||
1,
|
||||
bias=True,
|
||||
init_gain='sigmoid'))
|
||||
Linear(
|
||||
self.decoder_rnn_dim + self.mel_channels * r,
|
||||
1,
|
||||
bias=True,
|
||||
init_gain='sigmoid'))
|
||||
|
||||
self.attention_rnn_init = nn.Embedding(1, self.attention_rnn_dim)
|
||||
self.go_frame_init = nn.Embedding(1, self.mel_channels * r)
|
||||
|
@ -382,10 +398,10 @@ class Decoder(nn.Module):
|
|||
inputs.data.new_zeros(B).long())
|
||||
self.decoder_cell = Variable(
|
||||
inputs.data.new(B, self.decoder_rnn_dim).zero_())
|
||||
|
||||
|
||||
self.context = Variable(
|
||||
inputs.data.new(B, self.encoder_embedding_dim).zero_())
|
||||
|
||||
inputs.data.new(B, self.encoder_embedding_dim).zero_())
|
||||
|
||||
self.inputs = inputs
|
||||
self.processed_inputs = self.attention_layer.inputs_layer(inputs)
|
||||
self.mask = mask
|
||||
|
@ -401,8 +417,7 @@ class Decoder(nn.Module):
|
|||
stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
|
||||
stop_tokens = stop_tokens.contiguous()
|
||||
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
|
||||
outputs = outputs.view(
|
||||
outputs.size(0), -1, self.mel_channels)
|
||||
outputs = outputs.view(outputs.size(0), -1, self.mel_channels)
|
||||
outputs = outputs.transpose(1, 2)
|
||||
return outputs, stop_tokens, alignments
|
||||
|
||||
|
@ -415,12 +430,10 @@ class Decoder(nn.Module):
|
|||
self.attention_cell = F.dropout(
|
||||
self.attention_cell, self.p_attention_dropout, self.training)
|
||||
|
||||
self.context = self.attention_layer(
|
||||
self.attention_hidden, self.inputs, self.processed_inputs,
|
||||
self.mask)
|
||||
self.context = self.attention_layer(self.attention_hidden, self.inputs,
|
||||
self.processed_inputs, self.mask)
|
||||
|
||||
memory = torch.cat(
|
||||
(self.attention_hidden, self.context), -1)
|
||||
memory = torch.cat((self.attention_hidden, self.context), -1)
|
||||
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
||||
memory, (self.decoder_hidden, self.decoder_cell))
|
||||
self.decoder_hidden = F.dropout(self.decoder_hidden,
|
||||
|
@ -428,16 +441,18 @@ class Decoder(nn.Module):
|
|||
self.decoder_cell = F.dropout(self.decoder_cell,
|
||||
self.p_decoder_dropout, self.training)
|
||||
|
||||
decoder_hidden_context = torch.cat(
|
||||
(self.decoder_hidden, self.context), dim=1)
|
||||
decoder_hidden_context = torch.cat((self.decoder_hidden, self.context),
|
||||
dim=1)
|
||||
|
||||
decoder_output = self.linear_projection(
|
||||
decoder_hidden_context)
|
||||
decoder_output = self.linear_projection(decoder_hidden_context)
|
||||
|
||||
stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1)
|
||||
|
||||
gate_prediction = self.stopnet(stopnet_input)
|
||||
return decoder_output, gate_prediction, self.attention_layer.attention_weights
|
||||
if self.separate_stopnet:
|
||||
stop_token = self.stopnet(stopnet_input.detach())
|
||||
else:
|
||||
stop_token = self.stopnet(stopnet_input)
|
||||
return decoder_output, stop_token, self.attention_layer.attention_weights
|
||||
|
||||
def forward(self, inputs, memories, mask):
|
||||
memory = self.get_go_frame(inputs).unsqueeze(0)
|
||||
|
@ -451,8 +466,7 @@ class Decoder(nn.Module):
|
|||
outputs, stop_tokens, alignments = [], [], []
|
||||
while len(outputs) < memories.size(0) - 1:
|
||||
memory = memories[len(outputs)]
|
||||
mel_output, stop_token, attention_weights = self.decode(
|
||||
memory)
|
||||
mel_output, stop_token, attention_weights = self.decode(memory)
|
||||
outputs += [mel_output.squeeze(1)]
|
||||
stop_tokens += [stop_token.squeeze(1)]
|
||||
alignments += [attention_weights]
|
||||
|
@ -481,7 +495,8 @@ class Decoder(nn.Module):
|
|||
alignments += [alignment]
|
||||
|
||||
stop_flags[0] = stop_flags[0] or stop_token > 0.5
|
||||
stop_flags[1] = stop_flags[1] or (alignment[0, -2:].sum() > 0.8 and t > inputs.shape[1])
|
||||
stop_flags[1] = stop_flags[1] or (alignment[0, -2:].sum() > 0.8
|
||||
and t > inputs.shape[1])
|
||||
stop_flags[2] = t > inputs.shape[1] * 2
|
||||
if all(stop_flags):
|
||||
stop_count += 1
|
||||
|
@ -523,7 +538,8 @@ class Decoder(nn.Module):
|
|||
alignments += [alignment]
|
||||
|
||||
stop_flags[0] = stop_flags[0] or stop_token > 0.5
|
||||
stop_flags[1] = stop_flags[1] or (alignment[0, -2:].sum() > 0.5 and t > inputs.shape[1])
|
||||
stop_flags[1] = stop_flags[1] or (alignment[0, -2:].sum() > 0.5
|
||||
and t > inputs.shape[1])
|
||||
stop_flags[2] = t > inputs.shape[1] * 2
|
||||
if all(stop_flags):
|
||||
stop_count += 1
|
||||
|
@ -541,7 +557,6 @@ class Decoder(nn.Module):
|
|||
|
||||
return outputs, stop_tokens, alignments
|
||||
|
||||
|
||||
def inference_step(self, inputs, t, memory=None):
|
||||
"""
|
||||
For debug purposes
|
||||
|
|
|
@ -15,7 +15,8 @@ class Tacotron(nn.Module):
|
|||
padding_idx=None,
|
||||
memory_size=5,
|
||||
attn_win=False,
|
||||
attn_norm="sigmoid"):
|
||||
attn_norm="sigmoid",
|
||||
separate_stopnet=True):
|
||||
super(Tacotron, self).__init__()
|
||||
self.r = r
|
||||
self.mel_dim = mel_dim
|
||||
|
@ -23,7 +24,8 @@ class Tacotron(nn.Module):
|
|||
self.embedding = nn.Embedding(num_chars, 256, padding_idx=padding_idx)
|
||||
self.embedding.weight.data.normal_(0, 0.3)
|
||||
self.encoder = Encoder(256)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win, attn_norm)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
|
||||
attn_norm, separate_stopnet)
|
||||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Sequential(
|
||||
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
||||
|
|
|
@ -9,7 +9,17 @@ from utils.generic_utils import sequence_mask
|
|||
|
||||
# TODO: match function arguments with tacotron
|
||||
class Tacotron2(nn.Module):
|
||||
def __init__(self, num_chars, r, attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, location_attn=True):
|
||||
def __init__(self,
|
||||
num_chars,
|
||||
r,
|
||||
attn_win=False,
|
||||
attn_norm="softmax",
|
||||
prenet_type="original",
|
||||
prenet_dropout=True,
|
||||
forward_attn=False,
|
||||
trans_agent=False,
|
||||
location_attn=True,
|
||||
separate_stopnet=True):
|
||||
super(Tacotron2, self).__init__()
|
||||
self.n_mel_channels = 80
|
||||
self.n_frames_per_step = r
|
||||
|
@ -18,7 +28,10 @@ class Tacotron2(nn.Module):
|
|||
val = sqrt(3.0) * std # uniform bounds for std
|
||||
self.embedding.weight.data.uniform_(-val, val)
|
||||
self.encoder = Encoder(512)
|
||||
self.decoder = Decoder(512, self.n_mel_channels, r, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, location_attn)
|
||||
self.decoder = Decoder(512, self.n_mel_channels, r, attn_win,
|
||||
attn_norm, prenet_type, prenet_dropout,
|
||||
forward_attn, trans_agent, location_attn,
|
||||
separate_stopnet)
|
||||
self.postnet = Postnet(self.n_mel_channels)
|
||||
|
||||
def shape_outputs(self, mel_outputs, mel_outputs_postnet, alignments):
|
||||
|
@ -50,14 +63,14 @@ class Tacotron2(nn.Module):
|
|||
mel_outputs, mel_outputs_postnet, alignments)
|
||||
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
|
||||
|
||||
|
||||
def inference_truncated(self, text):
|
||||
"""
|
||||
Preserve model states for continuous inference
|
||||
"""
|
||||
embedded_inputs = self.embedding(text).transpose(1, 2)
|
||||
encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
|
||||
mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated(encoder_outputs)
|
||||
mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated(
|
||||
encoder_outputs)
|
||||
mel_outputs_postnet = self.postnet(mel_outputs)
|
||||
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
||||
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
|
||||
|
|
|
@ -57,6 +57,15 @@ def test_phoneme_to_sequence():
|
|||
print(len(sequence))
|
||||
assert text_hat == gt
|
||||
|
||||
# padding char
|
||||
text = "_Be a _voice, not an! echo_"
|
||||
sequence = phoneme_to_sequence(text, text_cleaner, lang)
|
||||
text_hat = sequence_to_phoneme(sequence)
|
||||
gt = "biː ɐ vɔɪs, nɑːt ɐn! ɛkoʊ"
|
||||
print(text_hat)
|
||||
print(len(sequence))
|
||||
assert text_hat == gt
|
||||
|
||||
|
||||
def test_text2phone():
|
||||
text = "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase, the grey matter in the parts of the brain responsible for emotional regulation and learning!"
|
||||
|
|
6
train.py
6
train.py
|
@ -141,11 +141,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
if not c.separate_stopnet and c.stopnet:
|
||||
loss += stop_loss
|
||||
|
||||
# backpass and check the grad norm for spec losses
|
||||
if c.separate_stopnet:
|
||||
loss.backward(retain_graph=True)
|
||||
else:
|
||||
loss.backward()
|
||||
loss.backward()
|
||||
optimizer, current_lr = weight_decay(optimizer, c.wd)
|
||||
grad_norm, _ = check_update(model, c.grad_clip)
|
||||
optimizer.step()
|
||||
|
|
|
@ -253,7 +253,8 @@ def setup_model(num_chars, c):
|
|||
r=c.r,
|
||||
attn_win=c.windowing,
|
||||
attn_norm=c.attention_norm,
|
||||
memory_size=c.memory_size)
|
||||
memory_size=c.memory_size,
|
||||
separate_stopnet=c.separate_stopnet)
|
||||
elif c.model.lower() == "tacotron2":
|
||||
model = MyModel(
|
||||
num_chars=num_chars,
|
||||
|
@ -264,5 +265,6 @@ def setup_model(num_chars, c):
|
|||
prenet_dropout=c.prenet_dropout,
|
||||
forward_attn=c.use_forward_attn,
|
||||
trans_agent=c.transition_agent,
|
||||
location_attn=c.location_attn)
|
||||
location_attn=c.location_attn,
|
||||
separate_stopnet=c.separate_stopnet)
|
||||
return model
|
|
@ -136,8 +136,8 @@ def _arpabet_to_sequence(text):
|
|||
|
||||
|
||||
def _should_keep_symbol(s):
|
||||
return s in _symbol_to_id and s is not '_' and s is not '~'
|
||||
return s in _symbol_to_id and s not in ['~', '^', '_']
|
||||
|
||||
|
||||
def _should_keep_phoneme(p):
|
||||
return p in _phonemes_to_id and p is not '_' and p is not '~'
|
||||
return p in _phonemes_to_id and p not in ['~', '^', '_']
|
||||
|
|
Loading…
Reference in New Issue