diff --git a/README.md b/README.md
index e3205c1b..173a5d7c 100644
--- a/README.md
+++ b/README.md
@@ -1,407 +1,206 @@
-
-## 🐸Coqui.ai News
-- 📣 ⓍTTSv2 is here with 16 languages and better performance across the board.
-- 📣 ⓍTTS fine-tuning code is out. Check the [example recipes](https://github.com/coqui-ai/TTS/tree/dev/recipes/ljspeech).
-- 📣 ⓍTTS can now stream with <200ms latency.
-- 📣 ⓍTTS, our production TTS model that can speak 13 languages, is released [Blog Post](https://coqui.ai/blog/tts/open_xtts), [Demo](https://huggingface.co/spaces/coqui/xtts), [Docs](https://tts.readthedocs.io/en/dev/models/xtts.html)
-- 📣 [🐶Bark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html)
-- 📣 You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS.
-- 📣 🐸TTS now supports 🐢Tortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html)
-
+# 🐸 Coqui TTS - Advanced Text-to-Speech Toolkit
-

+

-##

-
-
-**🐸TTS is a library for advanced Text-to-Speech generation.**
-
-🚀 Pretrained models in +1100 languages.
-
-🛠️ Tools for training new models and fine-tuning existing models in any language.
-
-📚 Utilities for dataset analysis and curation.
-______________________________________________________________________
+**A comprehensive library for advanced Text-to-Speech generation**
[](https://discord.gg/5eXr5seRrv)
[](https://opensource.org/licenses/MPL-2.0)
[](https://badge.fury.io/py/TTS)
-[](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md)
[](https://pepy.tech/project/tts)
[](https://zenodo.org/badge/latestdoi/265612440)
-
-
-
-
-
-
-
-
-
-
-
-
-[![Docs]()](https://tts.readthedocs.io/en/latest/)
-
-______________________________________________________________________
+## 📑 Table of Contents
+- [Latest Updates](#-latest-updates)
+- [Quick Start](#-quick-start)
+- [Features](#-features)
+- [Installation](#-installation)
+- [Basic Usage](#-basic-usage)
+- [Available Models](#-available-models)
+- [Advanced Usage](#-advanced-usage)
+- [Performance Optimization](#-performance-optimization)
+- [Deployment](#-deployment)
+- [Contributing](#-contributing)
+- [Community & Support](#-community--support)
+- [Security](#-security)
+- [Citation](#-citation)
-## 💬 Where to ask questions
-Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.
+## 🔥 Latest Updates
+- 📣 ⓍTTSv2 released with 16 languages and improved performance
+- 📣 ⓍTTS fine-tuning code available
+- 📣 ⓍTTS now supports streaming with <200ms latency
+- 📣 Support for ~1100 Fairseq models
+- 📣 Integration with 🐶Bark and 🐢Tortoise
+[View all updates](https://github.com/coqui-ai/TTS/releases)
-| Type | Platforms |
-| ------------------------------- | --------------------------------------- |
-| 🚨 **Bug Reports** | [GitHub Issue Tracker] |
-| 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] |
-| 👩💻 **Usage Questions** | [GitHub Discussions] |
-| 🗯 **General Discussion** | [GitHub Discussions] or [Discord] |
+## 🚀 Quick Start
-[github issue tracker]: https://github.com/coqui-ai/tts/issues
-[github discussions]: https://github.com/coqui-ai/TTS/discussions
-[discord]: https://discord.gg/5eXr5seRrv
-[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials
+```bash
+# Install TTS
+pip install TTS
+# Quick text-to-speech generation
+python -c "from TTS.api import TTS; tts = TTS('tts_models/multilingual/multi-dataset/xtts_v2'); tts.tts_to_file(text='Hello, this is a test!', file_path='output.wav')"
+```
-## 🔗 Links and Resources
-| Type | Links |
-| ------------------------------- | --------------------------------------- |
-| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/)
-| 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#installation)|
-| 👩💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)|
-| 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378)
-| 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)|
-| 📰 **Papers** | [TTS Papers](https://github.com/erogol/TTS-papers)|
+## ✨ Features
+- 🌟 High-performance Deep Learning models
+- 🌍 Support for 1100+ languages
+- 🎯 Production-ready performance
+- 🔧 Easy-to-use API
+- 📚 Comprehensive documentation
+- 🛠️ Flexible training pipeline
+## 💻 Installation
-## 🥇 TTS Performance
-
-
-Underlined "TTS*" and "Judy*" are **internal** 🐸TTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices.
-
-## Features
-- High-performance Deep Learning models for Text2Speech tasks.
- - Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
- - Speaker Encoder to compute speaker embeddings efficiently.
- - Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
-- Fast and efficient model training.
-- Detailed training logs on the terminal and Tensorboard.
-- Support for Multi-speaker TTS.
-- Efficient, flexible, lightweight but feature complete `Trainer API`.
-- Released and ready-to-use models.
-- Tools to curate Text2Speech datasets under```dataset_analysis```.
-- Utilities to use and test your models.
-- Modular (but not too much) code base enabling easy implementation of new ideas.
-
-## Model Implementations
-### Spectrogram models
-- Tacotron: [paper](https://arxiv.org/abs/1703.10135)
-- Tacotron2: [paper](https://arxiv.org/abs/1712.05884)
-- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129)
-- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802)
-- Align-TTS: [paper](https://arxiv.org/abs/2003.01950)
-- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf)
-- FastSpeech: [paper](https://arxiv.org/abs/1905.09263)
-- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558)
-- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557)
-- Capacitron: [paper](https://arxiv.org/abs/1906.03402)
-- OverFlow: [paper](https://arxiv.org/abs/2211.06892)
-- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320)
-- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612)
-
-### End-to-End Models
-- ⓍTTS: [blog](https://coqui.ai/blog/tts/open_xtts)
-- VITS: [paper](https://arxiv.org/pdf/2106.06103)
-- 🐸 YourTTS: [paper](https://arxiv.org/abs/2112.02418)
-- 🐢 Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts)
-- 🐶 Bark: [orig. repo](https://github.com/suno-ai/bark)
-
-### Attention Methods
-- Guided Attention: [paper](https://arxiv.org/abs/1710.08969)
-- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006)
-- Graves Attention: [paper](https://arxiv.org/abs/1910.10288)
-- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/)
-- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf)
-- Alignment Network: [paper](https://arxiv.org/abs/2108.10447)
-
-### Speaker Encoder
-- GE2E: [paper](https://arxiv.org/abs/1710.10467)
-- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf)
-
-### Vocoders
-- MelGAN: [paper](https://arxiv.org/abs/1910.06711)
-- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106)
-- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480)
-- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646)
-- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/)
-- WaveGrad: [paper](https://arxiv.org/abs/2009.00713)
-- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646)
-- UnivNet: [paper](https://arxiv.org/abs/2106.07889)
-
-### Voice Conversion
-- FreeVC: [paper](https://arxiv.org/abs/2210.15418)
-
-You can also help us implement more models.
-
-## Installation
-🐸TTS is tested on Ubuntu 18.04 with **python >= 3.9, < 3.12.**.
-
-If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option.
+### Requirements
+- Python >= 3.9, < 3.12
+- Operating Systems: Ubuntu 18.04+ (Primary), Windows, macOS
+- GPU (Optional but recommended for training)
+### Basic Installation
```bash
pip install TTS
```
-If you plan to code or train models, clone 🐸TTS and install it locally.
-
+### Development Installation
```bash
git clone https://github.com/coqui-ai/TTS
-pip install -e .[all,dev,notebooks] # Select the relevant extras
+pip install -e .[all,dev,notebooks]
```
-If you are on Ubuntu (Debian), you can also run following commands for installation.
-
+### Docker Installation
```bash
-$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
-$ make install
+docker run --rm -it -p 5002:5002 ghcr.io/coqui-ai/tts-cpu
```
-If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system).
+[Detailed Installation Guide](https://tts.readthedocs.io/en/latest/installation.html)
+## 📖 Basic Usage
-## Docker Image
-You can also try TTS without install with the docker image.
-Simply run the following command and you will be able to run TTS without installing it.
-
-```bash
-docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu
-python3 TTS/server/server.py --list_models #To get the list of available models
-python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server
-```
-
-You can then enjoy the TTS server [here](http://[::1]:5002/)
-More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html)
-
-
-## Synthesizing speech by 🐸TTS
-
-### 🐍 Python API
-
-#### Running a multi-speaker and multi-lingual model
-
+### Simple Text-to-Speech
```python
-import torch
from TTS.api import TTS
-# Get device
-device = "cuda" if torch.cuda.is_available() else "cpu"
+# Initialize TTS
+tts = TTS("tts_models/en/ljspeech/tacotron2-DDC")
-# List available 🐸TTS models
-print(TTS().list_models())
-
-# Init TTS
-tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
-
-# Run TTS
-# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
-# Text to speech list of amplitude values as output
-wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
-# Text to speech to a file
-tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
+# Generate speech
+tts.tts_to_file("Hello world!", file_path="output.wav")
```
-#### Running a single speaker model
-
+### Multi-lingual Voice Cloning
```python
-# Init TTS with the target model name
-tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)
-
-# Run TTS
-tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
-
-# Example voice cloning with YourTTS in English, French and Portuguese
-tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
-tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
-tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
-tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
-```
-
-#### Example voice conversion
-
-Converting the voice in `source_wav` to the voice of `target_wav`
-
-```python
-tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
-tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
-```
-
-#### Example voice cloning together with the voice conversion model.
-This way, you can clone voices by using any model in 🐸TTS.
-
-```python
-
-tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
-tts.tts_with_vc_to_file(
- "Wie sage ich auf Italienisch, dass ich dich liebe?",
- speaker_wav="target/speaker.wav",
+tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
+tts.tts_to_file(
+ text="Hello world!",
+ speaker_wav="path/to/speaker.wav",
+ language="en",
file_path="output.wav"
)
```
-#### Example text to speech using **Fairseq models in ~1100 languages** 🤯.
-For Fairseq models, use the following name format: `tts_models//fairseq/vits`.
-You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html)
-and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms).
+## 🎯 Available Models
-```python
-# TTS with on the fly voice conversion
-api = TTS("tts_models/deu/fairseq/vits")
-api.tts_with_vc_to_file(
- "Wie sage ich auf Italienisch, dass ich dich liebe?",
- speaker_wav="target/speaker.wav",
- file_path="output.wav"
-)
+### Text-to-Speech Models
+| Model | Languages | Speed | Quality | GPU Memory |
+|-------|-----------|-------|---------|------------|
+| ⓍTTS v2 | 16 | ⭐⭐⭐ | ⭐⭐⭐⭐⭐ | 4GB+ |
+| YourTTS | 13 | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 2GB+ |
+| Tacotron 2 | Any | ⭐⭐ | ⭐⭐⭐ | 1GB+ |
+| FastSpeech 2 | Any | ⭐⭐⭐⭐⭐ | ⭐⭐⭐ | 1GB+ |
+
+[Complete Model List](https://tts.readthedocs.io/en/latest/models.html)
+
+## 🚄 Performance Optimization
+
+### Hardware Requirements
+- Training: NVIDIA GPU with 8GB+ VRAM recommended
+- Inference: CPU or GPU (2GB+ VRAM)
+- RAM: 8GB minimum, 16GB recommended
+
+### Optimization Tips
+- Use batch processing for multiple inputs
+- Enable GPU acceleration when available
+- Implement caching for repeated phrases
+- Use quantized models for faster inference
+
+## 🌐 Deployment
+
+### Production Setup
+1. Load models during initialization
+2. Implement proper error handling
+3. Set up monitoring and logging
+4. Use appropriate scaling strategies
+
+### Docker Deployment
+```bash
+docker run -d --gpus all -p 5002:5002 ghcr.io/coqui-ai/tts-gpu
```
-### Command-line `tts`
+## 🛠 Contributing
-
+### Development Setup
+1. Fork the repository
+2. Set up development environment
+3. Run tests: `pytest tests/`
+4. Submit PR with detailed description
-Synthesize speech on command line.
+[Contributing Guidelines](CONTRIBUTING.md)
-You can either use your trained model or choose a model from the provided list.
+## 🤝 Community & Support
-If you don't specify any models, then it uses LJSpeech based English model.
+### Get Help
+- [Discord Community](https://discord.gg/5eXr5seRrv)
+- [GitHub Discussions](https://github.com/coqui-ai/TTS/discussions)
+- [Documentation](https://tts.readthedocs.io/)
-#### Single Speaker Models
+### Commercial Support
+- [Contact Coqui](https://coqui.ai/contact)
-- List provided models:
+## 🔒 Security
- ```
- $ tts --list_models
- ```
+### Best Practices
+- Keep models and dependencies updated
+- Use environment variables for sensitive data
+- Implement proper API authentication
+- Monitor for unusual usage patterns
-- Get model info (for both tts_models and vocoder_models):
+[Security Policy](SECURITY.md)
- - Query by type/name:
- The model_info_by_name uses the name as it from the --list_models.
- ```
- $ tts --model_info_by_name "///"
- ```
- For example:
- ```
- $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
- $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
- ```
- - Query by type/idx:
- The model_query_idx uses the corresponding idx from --list_models.
+## 📚 Citation
- ```
- $ tts --model_info_by_idx "/"
- ```
-
- For example:
-
- ```
- $ tts --model_info_by_idx tts_models/3
- ```
-
- - Query info for model info by full name:
- ```
- $ tts --model_info_by_name "///"
- ```
-
-- Run TTS with default models:
-
- ```
- $ tts --text "Text for TTS" --out_path output/path/speech.wav
- ```
-
-- Run TTS and pipe out the generated TTS wav file data:
-
- ```
- $ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
- ```
-
-- Run a TTS model with its default vocoder model:
-
- ```
- $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav
- ```
-
- For example:
-
- ```
- $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
- ```
-
-- Run with specific TTS and vocoder models from the list:
-
- ```
- $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav
- ```
-
- For example:
-
- ```
- $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
- ```
-
-- Run your own TTS model (Using Griffin-Lim Vocoder):
-
- ```
- $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
- ```
-
-- Run your own TTS and Vocoder models:
-
- ```
- $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
- --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
- ```
-
-#### Multi-speaker Models
-
-- List the available speakers and choose a among them:
-
- ```
- $ tts --model_name "//" --list_speaker_idxs
- ```
-
-- Run the multi-speaker TTS model with the target speaker ID:
-
- ```
- $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx
- ```
-
-- Run your own multi-speaker TTS model:
-
- ```
- $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx
- ```
-
-### Voice Conversion Models
-
-```
-$ tts --out_path output/path/speech.wav --model_name "//" --source_wav --target_wav
+```bibtex
+@misc{coqui-ai-tts,
+ author = {Eren Gölge and others},
+ title = {🐸TTS - a deep learning toolkit for Text-to-Speech},
+ year = {2021},
+ publisher = {GitHub},
+ journal = {GitHub repository},
+ howpublished = {\url{https://github.com/coqui-ai/TTS}},
+}
```
-
+## 📊 Performance Benchmarks
-## Directory Structure
+
+
+## 🌍 Language Support
+- 16 primary languages with ⓍTTS v2
+- 1100+ languages via Fairseq models
+- Support for custom language training
+
+[Language Documentation](https://tts.readthedocs.io/en/latest/languages.html)
+
+## 📁 Directory Structure
```
-|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
-|- utils/ (common utilities.)
-|- TTS
- |- bin/ (folder for all the executables.)
- |- train*.py (train your target model.)
- |- ...
- |- tts/ (text to speech models)
- |- layers/ (model layer definitions)
- |- models/ (model definitions)
- |- utils/ (model specific utilities.)
- |- speaker_encoder/ (Speaker Encoder models.)
- |- (same)
- |- vocoder/ (Vocoder models.)
- |- (same)
+|- notebooks/ # Jupyter Notebooks for examples
+|- TTS/
+ |- bin/ # Training scripts
+ |- tts/ # Core TTS models
+ |- vocoder/ # Vocoder models
+ |- utils/ # Utilities
```
+
+For more detailed information, visit our [Documentation](https://tts.readthedocs.io/).