Compute mean and std pitch

This commit is contained in:
Eren Gölge 2021-07-14 14:33:57 +02:00
parent 8fffd4e813
commit e802b24ad0
2 changed files with 44 additions and 8 deletions

View File

@ -127,6 +127,7 @@ class TTSDataset(Dataset):
self.input_seq_computed = False
self.rescue_item_idx = 1
self.pitch_computed = False
if use_phonemes and not os.path.isdir(phoneme_cache_path):
os.makedirs(phoneme_cache_path, exist_ok=True)
if self.verbose:
@ -247,6 +248,7 @@ class TTSDataset(Dataset):
pitch = None
if self.compute_f0:
pitch = self._load_or_compute_pitch(self.ap, wav_file, self.f0_cache_path)
pitch = self.normalize_pitch(pitch)
sample = {
"raw_text": raw_text,
@ -315,6 +317,11 @@ class TTSDataset(Dataset):
for idx, p in enumerate(phonemes):
self.items[idx][0] = p
################
# Pitch Methods
###############
# TODO: Refactor Pitch methods into a separate class
@staticmethod
def create_pitch_file_path(wav_file, cache_path):
file_name = os.path.splitext(os.path.basename(wav_file))[0]
@ -329,6 +336,19 @@ class TTSDataset(Dataset):
np.save(pitch_file, pitch)
return pitch
@staticmethod
def compute_pitch_stats(pitch_vecs):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs])
mean, std = np.mean(nonzeros), np.std(nonzeros)
return mean, std
def normalize_pitch(self, pitch):
zero_idxs = np.where(pitch == 0.0)[0]
pitch -= self.mean
pitch /= self.std
pitch[zero_idxs] = 0.0
return pitch
@staticmethod
def _load_or_compute_pitch(ap, wav_file, cache_path):
"""
@ -349,9 +369,9 @@ class TTSDataset(Dataset):
_, wav_file, *_ = item
pitch_file = TTSDataset.create_pitch_file_path(wav_file, cache_path)
if not os.path.exists(pitch_file):
TTSDataset._compute_and_save_pitch(ap, wav_file, pitch_file)
return True
return False
pitch = TTSDataset._compute_and_save_pitch(ap, wav_file, pitch_file)
return pitch
return None
def compute_pitch(self, cache_path, num_workers=0):
"""Compute the input sequences with multi-processing.
@ -362,16 +382,30 @@ class TTSDataset(Dataset):
if self.verbose:
print(" | > Computing pitch features ...")
if num_workers == 0:
for idx, item in enumerate(tqdm.tqdm(self.items)):
self._pitch_worker([item, self.ap, cache_path])
pitch_vecs = []
for _, item in enumerate(tqdm.tqdm(self.items)):
pitch_vecs += [self._pitch_worker([item, self.ap, cache_path])]
else:
with Pool(num_workers) as p:
_ = list(
pitch_vecs = list(
tqdm.tqdm(
p.imap(TTSDataset._pitch_worker, [[item, self.ap, cache_path] for item in self.items]),
total=len(self.items),
)
)
pitch_mean, pitch_std = self.compute_pitch_stats(pitch_vecs)
pitch_stats = {"mean": pitch_mean, "std": pitch_std}
np.save(os.path.join(cache_path, "pitch_stats"), pitch_stats, allow_pickle=True)
def load_pitch_stats(self, cache_path):
stats_path = os.path.join(cache_path, "pitch_stats.npy")
stats = np.load(stats_path, allow_pickle=True).item()
self.mean = stats["mean"]
self.std = stats["std"]
###################
# End Pitch Methods
###################
def sort_and_filter_items(self, by_audio_len=False):
r"""Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length

View File

@ -250,8 +250,10 @@ class BaseTTS(BaseModel):
dataset.sort_and_filter_items(config.get("sort_by_audio_len", default=False))
# compute pitch frames and write to files.
if config.compute_f0 and not os.path.exists(config.f0_cache_path) and rank in [None, 0]:
dataset.compute_pitch(config.get("f0_cache_path", None), config.num_loader_workers)
if config.compute_f0 and rank in [None, 0]:
if not os.path.exists(config.f0_cache_path):
dataset.compute_pitch(config.get("f0_cache_path", None), config.num_loader_workers)
dataset.load_pitch_stats(config.get("f0_cache_path", None))
# halt DDP processes for the main process to finish computing the F0 cache
if num_gpus > 1: