fixing pylint errors

This commit is contained in:
sanjaesc 2020-10-19 15:38:32 +02:00 committed by erogol
parent 878b7c373e
commit e8294cb9db
4 changed files with 51 additions and 44 deletions

View File

@ -1,8 +1,5 @@
import argparse
import math
import os
import pickle
import shutil
import sys
import traceback
import time
@ -11,7 +8,8 @@ import random
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
# from torch.utils.data.distributed import DistributedSampler
from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
@ -30,7 +28,6 @@ from TTS.utils.generic_utils import (
)
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.datasets.preprocess import (
load_wav_data,
find_feat_files,
load_wav_feat_data,
preprocess_wav_files,
@ -322,7 +319,7 @@ def main(args): # pylint: disable=redefined-outer-name
CONFIG.data_path, mel_feat_path, CONFIG.eval_split_size
)
else:
print(f" > No feature data found. Preprocessing...")
print(" > No feature data found. Preprocessing...")
# preprocessing feature data from given wav files
preprocess_wav_files(OUT_PATH, CONFIG, ap)
eval_data, train_data = load_wav_feat_data(

View File

@ -1,5 +1,3 @@
import os
import glob
import torch
import numpy as np
from torch.utils.data import Dataset
@ -42,7 +40,7 @@ class WaveRNNDataset(Dataset):
wavpath, feat_path = self.item_list[index]
m = np.load(feat_path.replace("/quant/", "/mel/"))
# x = self.wav_cache[index]
if 5 > m.shape[-1]:
if m.shape[-1] < 5:
print(" [!] Instance is too short! : {}".format(wavpath))
self.item_list[index] = self.item_list[index + 1]
feat_path = self.item_list[index]

View File

@ -42,7 +42,7 @@ class MelResNet(nn.Module):
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
self.batch_norm = nn.BatchNorm1d(compute_dims)
self.layers = nn.ModuleList()
for i in range(res_blocks):
for _ in range(res_blocks):
self.layers.append(ResBlock(compute_dims))
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
@ -365,7 +365,8 @@ class WaveRNN(nn.Module):
(i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio),
)
def get_gru_cell(self, gru):
@staticmethod
def get_gru_cell(gru):
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
gru_cell.weight_hh.data = gru.weight_hh_l0.data
gru_cell.weight_ih.data = gru.weight_ih_l0.data
@ -373,13 +374,14 @@ class WaveRNN(nn.Module):
gru_cell.bias_ih.data = gru.bias_ih_l0.data
return gru_cell
def pad_tensor(self, x, pad, side="both"):
@staticmethod
def pad_tensor(x, pad, side="both"):
# NB - this is just a quick method i need right now
# i.e., it won't generalise to other shapes/dims
b, t, c = x.size()
total = t + 2 * pad if side == "both" else t + pad
padded = torch.zeros(b, total, c).cuda()
if side == "before" or side == "both":
if side in ("before", "both"):
padded[:, pad : pad + t, :] = x
elif side == "after":
padded[:, :t, :] = x

View File

@ -11,7 +11,11 @@ def gaussian_loss(y_hat, y, log_std_min=-7.0):
mean = y_hat[:, :, :1]
log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min)
# TODO: replace with pytorch dist
log_probs = -0.5 * (- math.log(2.0 * math.pi) - 2. * log_std - torch.pow(y - mean, 2) * torch.exp((-2.0 * log_std)))
log_probs = -0.5 * (
-math.log(2.0 * math.pi)
- 2.0 * log_std
- torch.pow(y - mean, 2) * torch.exp((-2.0 * log_std))
)
return log_probs.squeeze().mean()
@ -19,7 +23,10 @@ def sample_from_gaussian(y_hat, log_std_min=-7.0, scale_factor=1.0):
assert y_hat.size(2) == 2
mean = y_hat[:, :, :1]
log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min)
dist = Normal(mean, torch.exp(log_std), )
dist = Normal(
mean,
torch.exp(log_std),
)
sample = dist.sample()
sample = torch.clamp(torch.clamp(sample, min=-scale_factor), max=scale_factor)
del dist
@ -36,11 +43,12 @@ def log_sum_exp(x):
# It is adapted from https://github.com/r9y9/wavenet_vocoder/blob/master/wavenet_vocoder/mixture.py
def discretized_mix_logistic_loss(y_hat, y, num_classes=65536,
log_scale_min=None, reduce=True):
def discretized_mix_logistic_loss(
y_hat, y, num_classes=65536, log_scale_min=None, reduce=True
):
if log_scale_min is None:
log_scale_min = float(np.log(1e-14))
y_hat = y_hat.permute(0,2,1)
y_hat = y_hat.permute(0, 2, 1)
assert y_hat.dim() == 3
assert y_hat.size(1) % 3 == 0
nr_mix = y_hat.size(1) // 3
@ -50,17 +58,17 @@ def discretized_mix_logistic_loss(y_hat, y, num_classes=65536,
# unpack parameters. (B, T, num_mixtures) x 3
logit_probs = y_hat[:, :, :nr_mix]
means = y_hat[:, :, nr_mix:2 * nr_mix]
log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min)
means = y_hat[:, :, nr_mix : 2 * nr_mix]
log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min)
# B x T x 1 -> B x T x num_mixtures
y = y.expand_as(means)
centered_y = y - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1))
plus_in = inv_stdv * (centered_y + 1.0 / (num_classes - 1))
cdf_plus = torch.sigmoid(plus_in)
min_in = inv_stdv * (centered_y - 1. / (num_classes - 1))
min_in = inv_stdv * (centered_y - 1.0 / (num_classes - 1))
cdf_min = torch.sigmoid(min_in)
# log probability for edge case of 0 (before scaling)
@ -77,34 +85,35 @@ def discretized_mix_logistic_loss(y_hat, y, num_classes=65536,
mid_in = inv_stdv * centered_y
# log probability in the center of the bin, to be used in extreme cases
# (not actually used in our code)
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in)
log_pdf_mid = mid_in - log_scales - 2.0 * F.softplus(mid_in)
# tf equivalent
"""
log_probs = tf.where(x < -0.999, log_cdf_plus,
tf.where(x > 0.999, log_one_minus_cdf_min,
tf.where(cdf_delta > 1e-5,
tf.log(tf.maximum(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
"""
# log_probs = tf.where(x < -0.999, log_cdf_plus,
# tf.where(x > 0.999, log_one_minus_cdf_min,
# tf.where(cdf_delta > 1e-5,
# tf.log(tf.maximum(cdf_delta, 1e-12)),
# log_pdf_mid - np.log(127.5))))
# TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value
# for num_classes=65536 case? 1e-7? not sure..
inner_inner_cond = (cdf_delta > 1e-5).float()
inner_inner_out = inner_inner_cond * \
torch.log(torch.clamp(cdf_delta, min=1e-12)) + \
(1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
inner_inner_out = inner_inner_cond * torch.log(
torch.clamp(cdf_delta, min=1e-12)
) + (1.0 - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
inner_cond = (y > 0.999).float()
inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond) * inner_inner_out
inner_out = (
inner_cond * log_one_minus_cdf_min + (1.0 - inner_cond) * inner_inner_out
)
cond = (y < -0.999).float()
log_probs = cond * log_cdf_plus + (1. - cond) * inner_out
log_probs = cond * log_cdf_plus + (1.0 - cond) * inner_out
log_probs = log_probs + F.log_softmax(logit_probs, -1)
if reduce:
return -torch.mean(log_sum_exp(log_probs))
else:
return -log_sum_exp(log_probs).unsqueeze(-1)
return -log_sum_exp(log_probs).unsqueeze(-1)
def sample_from_discretized_mix_logistic(y, log_scale_min=None):
@ -127,26 +136,27 @@ def sample_from_discretized_mix_logistic(y, log_scale_min=None):
# sample mixture indicator from softmax
temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
temp = logit_probs.data - torch.log(- torch.log(temp))
temp = logit_probs.data - torch.log(-torch.log(temp))
_, argmax = temp.max(dim=-1)
# (B, T) -> (B, T, nr_mix)
one_hot = to_one_hot(argmax, nr_mix)
# select logistic parameters
means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1)
log_scales = torch.clamp(torch.sum(
y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min)
means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1)
log_scales = torch.clamp(
torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1), min=log_scale_min
)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5)
x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u))
x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1.0 - u))
x = torch.clamp(torch.clamp(x, min=-1.), max=1.)
x = torch.clamp(torch.clamp(x, min=-1.0), max=1.0)
return x
def to_one_hot(tensor, n, fill_with=1.):
def to_one_hot(tensor, n, fill_with=1.0):
# we perform one hot encore with respect to the last axis
one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_()
if tensor.is_cuda: