mirror of https://github.com/coqui-ai/TTS.git
Add YourTTS VCTK recipe
This commit is contained in:
parent
3b8b105b0d
commit
e87bbdef5d
|
@ -0,0 +1,160 @@
|
|||
import torch
|
||||
import os
|
||||
from trainer import Trainer, TrainerArgs
|
||||
|
||||
from TTS.config.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.vits import VitsArgs, VitsAudioConfig, Vits
|
||||
from TTS.tts.configs.vits_config import VitsConfig
|
||||
|
||||
torch.set_num_threads(24)
|
||||
|
||||
# Name of the run for the Trainer
|
||||
RUN_NAME = "YourTTS-EN-VCTK"
|
||||
|
||||
# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs)
|
||||
OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/"
|
||||
|
||||
# If you want to do transfer learning and speedup your training you can set here the path to the original YourTTS model
|
||||
RESTORE_PATH = None # "/raid/coqui/Checkpoints/YourTTS/checkpoint.pth"
|
||||
|
||||
# This paramter is usefull to debug, it skips the training epochs and just do the evaluation and produce the test sentences
|
||||
SKIP_TRAIN_EPOCH = False
|
||||
|
||||
# Set here the batch size to be used in training and evaluation
|
||||
BATCH_SIZE = 32
|
||||
|
||||
# To get the speakers.json or speakers.pth you need to follow the steps described at: https://github.com/Edresson/YourTTS#reproducibility
|
||||
# or you can check the extract embedding script guidelines here: https://github.com/coqui-ai/TTS/blob/dev/TTS/bin/compute_embeddings.py#L20
|
||||
D_VECTOR_FILES = [
|
||||
"/raid/datasets/VCTK/speakers.json",
|
||||
]
|
||||
|
||||
# Change our dataset paths to the VCTK dataset or replace it for others
|
||||
# init configs
|
||||
vctk_config = BaseDatasetConfig(
|
||||
formatter="vctk", dataset_name="vctk", meta_file_train="metadata.csv", path="/raid/datasets/VCTK/", language="en"
|
||||
)
|
||||
|
||||
# add here all datasets configs, in our case we just want to train with the VCTK dataset then we need to add just VCTK
|
||||
datasets_list = [vctk_config]
|
||||
|
||||
# Audio config used in training. Please: Check if your dataset sampling rate and the parameter sample_rate here are matching, otherwise resample your audios
|
||||
audio_config = VitsAudioConfig(
|
||||
sample_rate=22050,
|
||||
hop_length=256,
|
||||
win_length=1024,
|
||||
fft_size=1024,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=None,
|
||||
num_mels=80,
|
||||
)
|
||||
|
||||
# Init VITSArgs setting the arguments that is needed for the YourTTS model
|
||||
model_args = VitsArgs(
|
||||
d_vector_file=D_VECTOR_FILES,
|
||||
use_d_vector_file=True,
|
||||
d_vector_dim=512,
|
||||
num_layers_text_encoder=10,
|
||||
# usefull parameters to the enable multilingual training
|
||||
# use_language_embedding=True,
|
||||
# embedded_language_dim=4,
|
||||
)
|
||||
|
||||
# General training config, here you can change the batch size and others usefull parameters
|
||||
config = VitsConfig(
|
||||
output_path=OUT_PATH,
|
||||
model_args=model_args,
|
||||
run_name=RUN_NAME,
|
||||
project_name="YourTTS",
|
||||
run_description="""
|
||||
- Original YourTTS trained using VCTK dataset
|
||||
""",
|
||||
dashboard_logger="tensorboard",
|
||||
logger_uri=None,
|
||||
audio=audio_config,
|
||||
batch_size=BATCH_SIZE,
|
||||
batch_group_size=48,
|
||||
eval_batch_size=BATCH_SIZE,
|
||||
num_loader_workers=8,
|
||||
eval_split_max_size=256,
|
||||
print_step=50,
|
||||
plot_step=100,
|
||||
log_model_step=1000,
|
||||
save_step=5000,
|
||||
save_n_checkpoints=2,
|
||||
save_checkpoints=True,
|
||||
target_loss="loss_1",
|
||||
print_eval=False,
|
||||
use_phonemes=False,
|
||||
phonemizer="espeak",
|
||||
phoneme_language="en",
|
||||
compute_input_seq_cache=True,
|
||||
add_blank=True,
|
||||
text_cleaner="english_cleaners",
|
||||
phoneme_cache_path=None,
|
||||
precompute_num_workers=12,
|
||||
start_by_longest=True,
|
||||
datasets=datasets_list,
|
||||
cudnn_benchmark=False,
|
||||
max_audio_len=220500, # it should be: sampling rate * max audio in sec. So it is 22050 * 10 = 220500
|
||||
mixed_precision=False,
|
||||
test_sentences=[
|
||||
[
|
||||
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||
"VCTK_p277",
|
||||
None,
|
||||
"en",
|
||||
],
|
||||
[
|
||||
"Be a voice, not an echo.",
|
||||
"VCTK_p239",
|
||||
None,
|
||||
"en",
|
||||
],
|
||||
[
|
||||
"I'm sorry Dave. I'm afraid I can't do that.",
|
||||
"VCTK_p258",
|
||||
None,
|
||||
"en",
|
||||
],
|
||||
[
|
||||
"This cake is great. It's so delicious and moist.",
|
||||
"VCTK_p244",
|
||||
None,
|
||||
"en",
|
||||
],
|
||||
[
|
||||
"Prior to November 22, 1963.",
|
||||
"VCTK_p305",
|
||||
None,
|
||||
"en",
|
||||
],
|
||||
],
|
||||
# Enable the weighted sampler
|
||||
use_weighted_sampler=True,
|
||||
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
|
||||
weighted_sampler_attrs={"speaker_name": 1.0},
|
||||
)
|
||||
|
||||
# Load all the datasets samples and split traning and evaluation sets
|
||||
train_samples, eval_samples = load_tts_samples(
|
||||
config.datasets,
|
||||
eval_split=True,
|
||||
eval_split_max_size=config.eval_split_max_size,
|
||||
eval_split_size=config.eval_split_size,
|
||||
)
|
||||
|
||||
# Init the model
|
||||
model = Vits.init_from_config(config)
|
||||
|
||||
# Init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH),
|
||||
config,
|
||||
output_path=OUT_PATH,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
)
|
||||
trainer.fit()
|
Loading…
Reference in New Issue