restructure TF tacotron files

This commit is contained in:
Eren Gölge 2021-03-03 15:31:32 +01:00 committed by Eren Gölge
parent 1ac99ce0d0
commit e8cf8cb00e
4 changed files with 596 additions and 1 deletions

View File

@ -0,0 +1,288 @@
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.ops import math_ops
# from tensorflow_addons.seq2seq import BahdanauAttention
# NOTE: linter has a problem with the current TF release
#pylint: disable=no-value-for-parameter
#pylint: disable=unexpected-keyword-arg
class Linear(keras.layers.Layer):
def __init__(self, units, use_bias, **kwargs):
super(Linear, self).__init__(**kwargs)
self.linear_layer = keras.layers.Dense(units, use_bias=use_bias, name='linear_layer')
self.activation = keras.layers.ReLU()
def call(self, x):
"""
shapes:
x: B x T x C
"""
return self.activation(self.linear_layer(x))
class LinearBN(keras.layers.Layer):
def __init__(self, units, use_bias, **kwargs):
super(LinearBN, self).__init__(**kwargs)
self.linear_layer = keras.layers.Dense(units, use_bias=use_bias, name='linear_layer')
self.batch_normalization = keras.layers.BatchNormalization(axis=-1, momentum=0.90, epsilon=1e-5, name='batch_normalization')
self.activation = keras.layers.ReLU()
def call(self, x, training=None):
"""
shapes:
x: B x T x C
"""
out = self.linear_layer(x)
out = self.batch_normalization(out, training=training)
return self.activation(out)
class Prenet(keras.layers.Layer):
def __init__(self,
prenet_type,
prenet_dropout,
units,
bias,
**kwargs):
super(Prenet, self).__init__(**kwargs)
self.prenet_type = prenet_type
self.prenet_dropout = prenet_dropout
self.linear_layers = []
if prenet_type == "bn":
self.linear_layers += [LinearBN(unit, use_bias=bias, name=f'linear_layer_{idx}') for idx, unit in enumerate(units)]
elif prenet_type == "original":
self.linear_layers += [Linear(unit, use_bias=bias, name=f'linear_layer_{idx}') for idx, unit in enumerate(units)]
else:
raise RuntimeError(' [!] Unknown prenet type.')
if prenet_dropout:
self.dropout = keras.layers.Dropout(rate=0.5)
def call(self, x, training=None):
"""
shapes:
x: B x T x C
"""
for linear in self.linear_layers:
if self.prenet_dropout:
x = self.dropout(linear(x), training=training)
else:
x = linear(x)
return x
def _sigmoid_norm(score):
attn_weights = tf.nn.sigmoid(score)
attn_weights = attn_weights / tf.reduce_sum(attn_weights, axis=1, keepdims=True)
return attn_weights
class Attention(keras.layers.Layer):
"""TODO: implement forward_attention
TODO: location sensitive attention
TODO: implement attention windowing """
def __init__(self, attn_dim, use_loc_attn, loc_attn_n_filters,
loc_attn_kernel_size, use_windowing, norm, use_forward_attn,
use_trans_agent, use_forward_attn_mask, **kwargs):
super(Attention, self).__init__(**kwargs)
self.use_loc_attn = use_loc_attn
self.loc_attn_n_filters = loc_attn_n_filters
self.loc_attn_kernel_size = loc_attn_kernel_size
self.use_windowing = use_windowing
self.norm = norm
self.use_forward_attn = use_forward_attn
self.use_trans_agent = use_trans_agent
self.use_forward_attn_mask = use_forward_attn_mask
self.query_layer = tf.keras.layers.Dense(attn_dim, use_bias=False, name='query_layer/linear_layer')
self.inputs_layer = tf.keras.layers.Dense(attn_dim, use_bias=False, name=f'{self.name}/inputs_layer/linear_layer')
self.v = tf.keras.layers.Dense(1, use_bias=True, name='v/linear_layer')
if use_loc_attn:
self.location_conv1d = keras.layers.Conv1D(
filters=loc_attn_n_filters,
kernel_size=loc_attn_kernel_size,
padding='same',
use_bias=False,
name='location_layer/location_conv1d')
self.location_dense = keras.layers.Dense(attn_dim, use_bias=False, name='location_layer/location_dense')
if norm == 'softmax':
self.norm_func = tf.nn.softmax
elif norm == 'sigmoid':
self.norm_func = _sigmoid_norm
else:
raise ValueError("Unknown value for attention norm type")
def init_states(self, batch_size, value_length):
states = []
if self.use_loc_attn:
attention_cum = tf.zeros([batch_size, value_length])
attention_old = tf.zeros([batch_size, value_length])
states = [attention_cum, attention_old]
if self.use_forward_attn:
alpha = tf.concat([
tf.ones([batch_size, 1]),
tf.zeros([batch_size, value_length])[:, :-1] + 1e-7
], 1)
states.append(alpha)
return tuple(states)
def process_values(self, values):
""" cache values for decoder iterations """
#pylint: disable=attribute-defined-outside-init
self.processed_values = self.inputs_layer(values)
self.values = values
def get_loc_attn(self, query, states):
""" compute location attention, query layer and
unnorm. attention weights"""
attention_cum, attention_old = states[:2]
attn_cat = tf.stack([attention_old, attention_cum], axis=2)
processed_query = self.query_layer(tf.expand_dims(query, 1))
processed_attn = self.location_dense(self.location_conv1d(attn_cat))
score = self.v(
tf.nn.tanh(self.processed_values + processed_query +
processed_attn))
score = tf.squeeze(score, axis=2)
return score, processed_query
def get_attn(self, query):
""" compute query layer and unnormalized attention weights """
processed_query = self.query_layer(tf.expand_dims(query, 1))
score = self.v(tf.nn.tanh(self.processed_values + processed_query))
score = tf.squeeze(score, axis=2)
return score, processed_query
def apply_score_masking(self, score, mask): #pylint: disable=no-self-use
""" ignore sequence paddings """
padding_mask = tf.expand_dims(math_ops.logical_not(mask), 2)
# Bias so padding positions do not contribute to attention distribution.
score -= 1.e9 * math_ops.cast(padding_mask, dtype=tf.float32)
return score
def apply_forward_attention(self, alignment, alpha): #pylint: disable=no-self-use
# forward attention
fwd_shifted_alpha = tf.pad(alpha[:, :-1], ((0, 0), (1, 0)), constant_values=0.0)
# compute transition potentials
new_alpha = ((1 - 0.5) * alpha + 0.5 * fwd_shifted_alpha + 1e-8) * alignment
# renormalize attention weights
new_alpha = new_alpha / tf.reduce_sum(new_alpha, axis=1, keepdims=True)
return new_alpha
def update_states(self, old_states, scores_norm, attn_weights, new_alpha=None):
states = []
if self.use_loc_attn:
states = [old_states[0] + scores_norm, attn_weights]
if self.use_forward_attn:
states.append(new_alpha)
return tuple(states)
def call(self, query, states):
"""
shapes:
query: B x D
"""
if self.use_loc_attn:
score, _ = self.get_loc_attn(query, states)
else:
score, _ = self.get_attn(query)
# TODO: masking
# if mask is not None:
# self.apply_score_masking(score, mask)
# attn_weights shape == (batch_size, max_length, 1)
# normalize attention scores
scores_norm = self.norm_func(score)
attn_weights = scores_norm
# apply forward attention
new_alpha = None
if self.use_forward_attn:
new_alpha = self.apply_forward_attention(attn_weights, states[-1])
attn_weights = new_alpha
# update states tuple
# states = (cum_attn_weights, attn_weights, new_alpha)
states = self.update_states(states, scores_norm, attn_weights, new_alpha)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = tf.matmul(tf.expand_dims(attn_weights, axis=2), self.values, transpose_a=True, transpose_b=False)
context_vector = tf.squeeze(context_vector, axis=1)
return context_vector, attn_weights, states
# def _location_sensitive_score(processed_query, keys, processed_loc, attention_v, attention_b):
# dtype = processed_query.dtype
# num_units = keys.shape[-1].value or array_ops.shape(keys)[-1]
# return tf.reduce_sum(attention_v * tf.tanh(keys + processed_query + processed_loc + attention_b), [2])
# class LocationSensitiveAttention(BahdanauAttention):
# def __init__(self,
# units,
# memory=None,
# memory_sequence_length=None,
# normalize=False,
# probability_fn="softmax",
# kernel_initializer="glorot_uniform",
# dtype=None,
# name="LocationSensitiveAttention",
# location_attention_filters=32,
# location_attention_kernel_size=31):
# super(LocationSensitiveAttention,
# self).__init__(units=units,
# memory=memory,
# memory_sequence_length=memory_sequence_length,
# normalize=normalize,
# probability_fn='softmax', ## parent module default
# kernel_initializer=kernel_initializer,
# dtype=dtype,
# name=name)
# if probability_fn == 'sigmoid':
# self.probability_fn = lambda score, _: self._sigmoid_normalization(score)
# self.location_conv = keras.layers.Conv1D(filters=location_attention_filters, kernel_size=location_attention_kernel_size, padding='same', use_bias=False)
# self.location_dense = keras.layers.Dense(units, use_bias=False)
# # self.v = keras.layers.Dense(1, use_bias=True)
# def _location_sensitive_score(self, processed_query, keys, processed_loc):
# processed_query = tf.expand_dims(processed_query, 1)
# return tf.reduce_sum(self.attention_v * tf.tanh(keys + processed_query + processed_loc), [2])
# def _location_sensitive(self, alignment_cum, alignment_old):
# alignment_cat = tf.stack([alignment_cum, alignment_old], axis=2)
# return self.location_dense(self.location_conv(alignment_cat))
# def _sigmoid_normalization(self, score):
# return tf.nn.sigmoid(score) / tf.reduce_sum(tf.nn.sigmoid(score), axis=-1, keepdims=True)
# # def _apply_masking(self, score, mask):
# # padding_mask = tf.expand_dims(math_ops.logical_not(mask), 2)
# # # Bias so padding positions do not contribute to attention distribution.
# # score -= 1.e9 * math_ops.cast(padding_mask, dtype=tf.float32)
# # return score
# def _calculate_attention(self, query, state):
# alignment_cum, alignment_old = state[:2]
# processed_query = self.query_layer(
# query) if self.query_layer else query
# processed_loc = self._location_sensitive(alignment_cum, alignment_old)
# score = self._location_sensitive_score(
# processed_query,
# self.keys,
# processed_loc)
# alignment = self.probability_fn(score, state)
# alignment_cum = alignment_cum + alignment
# state[0] = alignment_cum
# state[1] = alignment
# return alignment, state
# def compute_context(self, alignments):
# expanded_alignments = tf.expand_dims(alignments, 1)
# context = tf.matmul(expanded_alignments, self.values)
# context = tf.squeeze(context, [1])
# return context
# # def call(self, query, state):
# # alignment, next_state = self._calculate_attention(query, state)
# # return alignment, next_state

View File

@ -0,0 +1,302 @@
import tensorflow as tf
from tensorflow import keras
from TTS.tts.tf.utils.tf_utils import shape_list
from TTS.tts.tf.layers.tacotron.common_layers import Prenet, Attention
# NOTE: linter has a problem with the current TF release
#pylint: disable=no-value-for-parameter
#pylint: disable=unexpected-keyword-arg
class ConvBNBlock(keras.layers.Layer):
def __init__(self, filters, kernel_size, activation, **kwargs):
super(ConvBNBlock, self).__init__(**kwargs)
self.convolution1d = keras.layers.Conv1D(filters, kernel_size, padding='same', name='convolution1d')
self.batch_normalization = keras.layers.BatchNormalization(axis=2, momentum=0.90, epsilon=1e-5, name='batch_normalization')
self.dropout = keras.layers.Dropout(rate=0.5, name='dropout')
self.activation = keras.layers.Activation(activation, name='activation')
def call(self, x, training=None):
o = self.convolution1d(x)
o = self.batch_normalization(o, training=training)
o = self.activation(o)
o = self.dropout(o, training=training)
return o
class Postnet(keras.layers.Layer):
def __init__(self, output_filters, num_convs, **kwargs):
super(Postnet, self).__init__(**kwargs)
self.convolutions = []
self.convolutions.append(ConvBNBlock(512, 5, 'tanh', name='convolutions_0'))
for idx in range(1, num_convs - 1):
self.convolutions.append(ConvBNBlock(512, 5, 'tanh', name=f'convolutions_{idx}'))
self.convolutions.append(ConvBNBlock(output_filters, 5, 'linear', name=f'convolutions_{idx+1}'))
def call(self, x, training=None):
o = x
for layer in self.convolutions:
o = layer(o, training=training)
return o
class Encoder(keras.layers.Layer):
def __init__(self, output_input_dim, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.convolutions = []
for idx in range(3):
self.convolutions.append(ConvBNBlock(output_input_dim, 5, 'relu', name=f'convolutions_{idx}'))
self.lstm = keras.layers.Bidirectional(keras.layers.LSTM(output_input_dim // 2, return_sequences=True, use_bias=True), name='lstm')
def call(self, x, training=None):
o = x
for layer in self.convolutions:
o = layer(o, training=training)
o = self.lstm(o)
return o
class Decoder(keras.layers.Layer):
#pylint: disable=unused-argument
def __init__(self, frame_dim, r, attn_type, use_attn_win, attn_norm, prenet_type,
prenet_dropout, use_forward_attn, use_trans_agent, use_forward_attn_mask,
use_location_attn, attn_K, separate_stopnet, speaker_emb_dim, enable_tflite, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.frame_dim = frame_dim
self.r_init = tf.constant(r, dtype=tf.int32)
self.r = tf.constant(r, dtype=tf.int32)
self.output_dim = r * self.frame_dim
self.separate_stopnet = separate_stopnet
self.enable_tflite = enable_tflite
# layer constants
self.max_decoder_steps = tf.constant(1000, dtype=tf.int32)
self.stop_thresh = tf.constant(0.5, dtype=tf.float32)
# model dimensions
self.query_dim = 1024
self.decoder_rnn_dim = 1024
self.prenet_dim = 256
self.attn_dim = 128
self.p_attention_dropout = 0.1
self.p_decoder_dropout = 0.1
self.prenet = Prenet(prenet_type,
prenet_dropout,
[self.prenet_dim, self.prenet_dim],
bias=False,
name='prenet')
self.attention_rnn = keras.layers.LSTMCell(self.query_dim, use_bias=True, name='attention_rnn', )
self.attention_rnn_dropout = keras.layers.Dropout(0.5)
# TODO: implement other attn options
self.attention = Attention(attn_dim=self.attn_dim,
use_loc_attn=True,
loc_attn_n_filters=32,
loc_attn_kernel_size=31,
use_windowing=False,
norm=attn_norm,
use_forward_attn=use_forward_attn,
use_trans_agent=use_trans_agent,
use_forward_attn_mask=use_forward_attn_mask,
name='attention')
self.decoder_rnn = keras.layers.LSTMCell(self.decoder_rnn_dim, use_bias=True, name='decoder_rnn')
self.decoder_rnn_dropout = keras.layers.Dropout(0.5)
self.linear_projection = keras.layers.Dense(self.frame_dim * r, name='linear_projection/linear_layer')
self.stopnet = keras.layers.Dense(1, name='stopnet/linear_layer')
def set_max_decoder_steps(self, new_max_steps):
self.max_decoder_steps = tf.constant(new_max_steps, dtype=tf.int32)
def set_r(self, new_r):
self.r = tf.constant(new_r, dtype=tf.int32)
self.output_dim = self.frame_dim * new_r
def build_decoder_initial_states(self, batch_size, memory_dim, memory_length):
zero_frame = tf.zeros([batch_size, self.frame_dim])
zero_context = tf.zeros([batch_size, memory_dim])
attention_rnn_state = self.attention_rnn.get_initial_state(batch_size=batch_size, dtype=tf.float32)
decoder_rnn_state = self.decoder_rnn.get_initial_state(batch_size=batch_size, dtype=tf.float32)
attention_states = self.attention.init_states(batch_size, memory_length)
return zero_frame, zero_context, attention_rnn_state, decoder_rnn_state, attention_states
def step(self, prenet_next, states,
memory_seq_length=None, training=None):
_, context_next, attention_rnn_state, decoder_rnn_state, attention_states = states
attention_rnn_input = tf.concat([prenet_next, context_next], -1)
attention_rnn_output, attention_rnn_state = \
self.attention_rnn(attention_rnn_input,
attention_rnn_state, training=training)
attention_rnn_output = self.attention_rnn_dropout(attention_rnn_output, training=training)
context, attention, attention_states = self.attention(attention_rnn_output, attention_states, training=training)
decoder_rnn_input = tf.concat([attention_rnn_output, context], -1)
decoder_rnn_output, decoder_rnn_state = \
self.decoder_rnn(decoder_rnn_input, decoder_rnn_state, training=training)
decoder_rnn_output = self.decoder_rnn_dropout(decoder_rnn_output, training=training)
linear_projection_input = tf.concat([decoder_rnn_output, context], -1)
output_frame = self.linear_projection(linear_projection_input, training=training)
stopnet_input = tf.concat([decoder_rnn_output, output_frame], -1)
stopnet_output = self.stopnet(stopnet_input, training=training)
output_frame = output_frame[:, :self.r * self.frame_dim]
states = (output_frame[:, self.frame_dim * (self.r - 1):], context, attention_rnn_state, decoder_rnn_state, attention_states)
return output_frame, stopnet_output, states, attention
def decode(self, memory, states, frames, memory_seq_length=None):
B, _, _ = shape_list(memory)
num_iter = shape_list(frames)[1] // self.r
# init states
frame_zero = tf.expand_dims(states[0], 1)
frames = tf.concat([frame_zero, frames], axis=1)
outputs = tf.TensorArray(dtype=tf.float32, size=num_iter)
attentions = tf.TensorArray(dtype=tf.float32, size=num_iter)
stop_tokens = tf.TensorArray(dtype=tf.float32, size=num_iter)
# pre-computes
self.attention.process_values(memory)
prenet_output = self.prenet(frames, training=True)
step_count = tf.constant(0, dtype=tf.int32)
def _body(step, memory, prenet_output, states, outputs, stop_tokens, attentions):
prenet_next = prenet_output[:, step]
output, stop_token, states, attention = self.step(prenet_next,
states,
memory_seq_length)
outputs = outputs.write(step, output)
attentions = attentions.write(step, attention)
stop_tokens = stop_tokens.write(step, stop_token)
return step + 1, memory, prenet_output, states, outputs, stop_tokens, attentions
_, memory, _, states, outputs, stop_tokens, attentions = \
tf.while_loop(lambda *arg: True,
_body,
loop_vars=(step_count, memory, prenet_output,
states, outputs, stop_tokens, attentions),
parallel_iterations=32,
swap_memory=True,
maximum_iterations=num_iter)
outputs = outputs.stack()
attentions = attentions.stack()
stop_tokens = stop_tokens.stack()
outputs = tf.transpose(outputs, [1, 0, 2])
attentions = tf.transpose(attentions, [1, 0, 2])
stop_tokens = tf.transpose(stop_tokens, [1, 0, 2])
stop_tokens = tf.squeeze(stop_tokens, axis=2)
outputs = tf.reshape(outputs, [B, -1, self.frame_dim])
return outputs, stop_tokens, attentions
def decode_inference(self, memory, states):
B, _, _ = shape_list(memory)
# init states
outputs = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True)
attentions = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True)
stop_tokens = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True)
# pre-computes
self.attention.process_values(memory)
# iter vars
stop_flag = tf.constant(False, dtype=tf.bool)
step_count = tf.constant(0, dtype=tf.int32)
def _body(step, memory, states, outputs, stop_tokens, attentions, stop_flag):
frame_next = states[0]
prenet_next = self.prenet(frame_next, training=False)
output, stop_token, states, attention = self.step(prenet_next,
states,
None,
training=False)
stop_token = tf.math.sigmoid(stop_token)
outputs = outputs.write(step, output)
attentions = attentions.write(step, attention)
stop_tokens = stop_tokens.write(step, stop_token)
stop_flag = tf.greater(stop_token, self.stop_thresh)
stop_flag = tf.reduce_all(stop_flag)
return step + 1, memory, states, outputs, stop_tokens, attentions, stop_flag
cond = lambda step, m, s, o, st, a, stop_flag: tf.equal(stop_flag, tf.constant(False, dtype=tf.bool))
_, memory, states, outputs, stop_tokens, attentions, stop_flag = \
tf.while_loop(cond,
_body,
loop_vars=(step_count, memory, states, outputs,
stop_tokens, attentions, stop_flag),
parallel_iterations=32,
swap_memory=True,
maximum_iterations=self.max_decoder_steps)
outputs = outputs.stack()
attentions = attentions.stack()
stop_tokens = stop_tokens.stack()
outputs = tf.transpose(outputs, [1, 0, 2])
attentions = tf.transpose(attentions, [1, 0, 2])
stop_tokens = tf.transpose(stop_tokens, [1, 0, 2])
stop_tokens = tf.squeeze(stop_tokens, axis=2)
outputs = tf.reshape(outputs, [B, -1, self.frame_dim])
return outputs, stop_tokens, attentions
def decode_inference_tflite(self, memory, states):
"""Inference with TF-Lite compatibility. It assumes
batch_size is 1"""
# init states
# dynamic_shape is not supported in TFLite
outputs = tf.TensorArray(dtype=tf.float32,
size=self.max_decoder_steps,
element_shape=tf.TensorShape(
[self.output_dim]),
clear_after_read=False,
dynamic_size=False)
# stop_flags = tf.TensorArray(dtype=tf.bool,
# size=self.max_decoder_steps,
# element_shape=tf.TensorShape(
# []),
# clear_after_read=False,
# dynamic_size=False)
attentions = ()
stop_tokens = ()
# pre-computes
self.attention.process_values(memory)
# iter vars
stop_flag = tf.constant(False, dtype=tf.bool)
step_count = tf.constant(0, dtype=tf.int32)
def _body(step, memory, states, outputs, stop_flag):
frame_next = states[0]
prenet_next = self.prenet(frame_next, training=False)
output, stop_token, states, _ = self.step(prenet_next,
states,
None,
training=False)
stop_token = tf.math.sigmoid(stop_token)
stop_flag = tf.greater(stop_token, self.stop_thresh)
stop_flag = tf.reduce_all(stop_flag)
# stop_flags = stop_flags.write(step, tf.logical_not(stop_flag))
outputs = outputs.write(step, tf.reshape(output, [-1]))
return step + 1, memory, states, outputs, stop_flag
cond = lambda step, m, s, o, stop_flag: tf.equal(stop_flag, tf.constant(False, dtype=tf.bool))
step_count, memory, states, outputs, stop_flag = \
tf.while_loop(cond,
_body,
loop_vars=(step_count, memory, states, outputs,
stop_flag),
parallel_iterations=32,
swap_memory=True,
maximum_iterations=self.max_decoder_steps)
outputs = outputs.stack()
outputs = tf.gather(outputs, tf.range(step_count)) # pylint: disable=no-value-for-parameter
outputs = tf.expand_dims(outputs, axis=[0])
outputs = tf.transpose(outputs, [1, 0, 2])
outputs = tf.reshape(outputs, [1, -1, self.frame_dim])
return outputs, stop_tokens, attentions
def call(self, memory, states, frames=None, memory_seq_length=None, training=False):
if training:
return self.decode(memory, states, frames, memory_seq_length)
if self.enable_tflite:
return self.decode_inference_tflite(memory, states)
return self.decode_inference(memory, states)

View File

@ -1,7 +1,7 @@
import tensorflow as tf
from tensorflow import keras
from TTS.tts.tf.layers.tacotron2 import Encoder, Decoder, Postnet
from TTS.tts.tf.layers.tacotron.tacotron2 import Encoder, Decoder, Postnet
from TTS.tts.tf.utils.tf_utils import shape_list

View File

@ -94,6 +94,7 @@ def basic_turkish_cleaners(text):
text = collapse_whitespace(text)
return text
def english_cleaners(text):
'''Pipeline for English text, including number and abbreviation expansion.'''
text = convert_to_ascii(text)
@ -106,6 +107,7 @@ def english_cleaners(text):
text = collapse_whitespace(text)
return text
def french_cleaners(text):
'''Pipeline for French text. There is no need to expand numbers, phonemizer already does that'''
text = expand_abbreviations(text, lang='fr')
@ -115,6 +117,7 @@ def french_cleaners(text):
text = collapse_whitespace(text)
return text
def portuguese_cleaners(text):
'''Basic pipeline for Portuguese text. There is no need to expand abbreviation and
numbers, phonemizer already does that'''
@ -124,11 +127,13 @@ def portuguese_cleaners(text):
text = collapse_whitespace(text)
return text
def chinese_mandarin_cleaners(text: str) -> str:
'''Basic pipeline for chinese'''
text = replace_numbers_to_characters_in_text(text)
return text
def phoneme_cleaners(text):
'''Pipeline for phonemes mode, including number and abbreviation expansion.'''
text = expand_numbers(text)