mirror of https://github.com/coqui-ai/TTS.git
Replace webrtcvad by silero-vad
This commit is contained in:
parent
3af01cfe3b
commit
ea53d6feb3
|
@ -1,51 +1,24 @@
|
||||||
import argparse
|
import argparse
|
||||||
import glob
|
import glob
|
||||||
import multiprocessing
|
|
||||||
import os
|
import os
|
||||||
import pathlib
|
import pathlib
|
||||||
|
|
||||||
from tqdm.contrib.concurrent import process_map
|
from tqdm import tqdm
|
||||||
|
from TTS.utils.vad import get_vad_model_and_utils, remove_silence
|
||||||
from TTS.utils.vad import get_vad_speech_segments, read_wave, write_wave
|
|
||||||
|
|
||||||
|
|
||||||
def remove_silence(filepath):
|
def adjust_path_and_remove_silence(audio_path):
|
||||||
output_path = filepath.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
|
output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
|
||||||
# ignore if the file exists
|
# ignore if the file exists
|
||||||
if os.path.exists(output_path) and not args.force:
|
if os.path.exists(output_path) and not args.force:
|
||||||
return
|
return output_path
|
||||||
|
|
||||||
# create all directory structure
|
# create all directory structure
|
||||||
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
||||||
# load wave
|
# remove the silence and save the audio
|
||||||
audio, sample_rate = read_wave(filepath)
|
output_path = remove_silence(model_and_utils, audio_path, output_path, trim_just_beginning_and_end=args.trim_just_beginning_and_end, use_cuda=args.use_cuda)
|
||||||
|
|
||||||
# get speech segments
|
return output_path
|
||||||
segments = get_vad_speech_segments(audio, sample_rate, aggressiveness=args.aggressiveness)
|
|
||||||
|
|
||||||
segments = list(segments)
|
|
||||||
num_segments = len(segments)
|
|
||||||
flag = False
|
|
||||||
# create the output wave
|
|
||||||
if num_segments != 0:
|
|
||||||
for i, segment in reversed(list(enumerate(segments))):
|
|
||||||
if i >= 1:
|
|
||||||
if not flag:
|
|
||||||
concat_segment = segment
|
|
||||||
flag = True
|
|
||||||
else:
|
|
||||||
concat_segment = segment + concat_segment
|
|
||||||
else:
|
|
||||||
if flag:
|
|
||||||
segment = segment + concat_segment
|
|
||||||
# print("Saving: ", output_path)
|
|
||||||
write_wave(output_path, segment, sample_rate)
|
|
||||||
return
|
|
||||||
else:
|
|
||||||
print("> Just Copying the file to:", output_path)
|
|
||||||
# if fail to remove silence just write the file
|
|
||||||
write_wave(output_path, audio, sample_rate)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess_audios():
|
def preprocess_audios():
|
||||||
|
@ -54,17 +27,24 @@ def preprocess_audios():
|
||||||
if not args.force:
|
if not args.force:
|
||||||
print("> Ignoring files that already exist in the output directory.")
|
print("> Ignoring files that already exist in the output directory.")
|
||||||
|
|
||||||
|
if args.trim_just_beginning_and_end:
|
||||||
|
print("> Trimming just the beginning and the end with nonspeech parts.")
|
||||||
|
else:
|
||||||
|
print("> Trimming all nonspeech parts.")
|
||||||
|
|
||||||
if files:
|
if files:
|
||||||
# create threads
|
# create threads
|
||||||
num_threads = multiprocessing.cpu_count()
|
# num_threads = multiprocessing.cpu_count()
|
||||||
process_map(remove_silence, files, max_workers=num_threads, chunksize=15)
|
# process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15)
|
||||||
|
for f in tqdm(files):
|
||||||
|
adjust_path_and_remove_silence(f)
|
||||||
else:
|
else:
|
||||||
print("> No files Found !")
|
print("> No files Found !")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description="python remove_silence.py -i=VCTK-Corpus-bk/ -o=../VCTK-Corpus-removed-silence -g=wav48/*/*.wav -a=2"
|
description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True"
|
||||||
)
|
)
|
||||||
parser.add_argument("-i", "--input_dir", type=str, default="../VCTK-Corpus", help="Dataset root dir")
|
parser.add_argument("-i", "--input_dir", type=str, default="../VCTK-Corpus", help="Dataset root dir")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -79,11 +59,20 @@ if __name__ == "__main__":
|
||||||
help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav",
|
help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"-a",
|
"-t",
|
||||||
"--aggressiveness",
|
"--trim_just_beginning_and_end",
|
||||||
type=int,
|
type=bool,
|
||||||
default=2,
|
default=True,
|
||||||
help="set its aggressiveness mode, which is an integer between 0 and 3. 0 is the least aggressive about filtering out non-speech, 3 is the most aggressive.",
|
help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-c",
|
||||||
|
"--use_cuda",
|
||||||
|
type=bool,
|
||||||
|
default=False,
|
||||||
|
help="If True use cuda",
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
# load the model and utils
|
||||||
|
model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda)
|
||||||
preprocess_audios()
|
preprocess_audios()
|
||||||
|
|
195
TTS/utils/vad.py
195
TTS/utils/vad.py
|
@ -1,144 +1,71 @@
|
||||||
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
|
import torch
|
||||||
import collections
|
import torchaudio
|
||||||
import contextlib
|
|
||||||
import wave
|
|
||||||
|
|
||||||
import webrtcvad
|
def read_audio(path):
|
||||||
|
wav, sr = torchaudio.load(path)
|
||||||
|
|
||||||
|
if wav.size(0) > 1:
|
||||||
|
wav = wav.mean(dim=0, keepdim=True)
|
||||||
|
|
||||||
def read_wave(path):
|
return wav.squeeze(0), sr
|
||||||
"""Reads a .wav file.
|
|
||||||
|
|
||||||
Takes the path, and returns (PCM audio data, sample rate).
|
def resample_wav(wav, sr, new_sr):
|
||||||
"""
|
wav = wav.unsqueeze(0)
|
||||||
with contextlib.closing(wave.open(path, "rb")) as wf:
|
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=new_sr)
|
||||||
num_channels = wf.getnchannels()
|
wav = transform(wav)
|
||||||
assert num_channels == 1
|
return wav.squeeze(0)
|
||||||
sample_width = wf.getsampwidth()
|
|
||||||
assert sample_width == 2
|
|
||||||
sample_rate = wf.getframerate()
|
|
||||||
assert sample_rate in (8000, 16000, 32000, 48000)
|
|
||||||
pcm_data = wf.readframes(wf.getnframes())
|
|
||||||
return pcm_data, sample_rate
|
|
||||||
|
|
||||||
|
def map_timestamps_to_new_sr(vad_sr, new_sr, timestamps, just_begging_end=False):
|
||||||
def write_wave(path, audio, sample_rate):
|
factor = new_sr / vad_sr
|
||||||
"""Writes a .wav file.
|
new_timestamps = []
|
||||||
|
if just_begging_end:
|
||||||
Takes path, PCM audio data, and sample rate.
|
# get just the start and end timestamps
|
||||||
"""
|
new_dict = {'start': int(timestamps[0]['start']*factor), 'end': int(timestamps[-1]['end']*factor)}
|
||||||
with contextlib.closing(wave.open(path, "wb")) as wf:
|
new_timestamps.append(new_dict)
|
||||||
wf.setnchannels(1)
|
|
||||||
wf.setsampwidth(2)
|
|
||||||
wf.setframerate(sample_rate)
|
|
||||||
wf.writeframes(audio)
|
|
||||||
|
|
||||||
|
|
||||||
class Frame(object):
|
|
||||||
"""Represents a "frame" of audio data."""
|
|
||||||
|
|
||||||
def __init__(self, _bytes, timestamp, duration):
|
|
||||||
self.bytes = _bytes
|
|
||||||
self.timestamp = timestamp
|
|
||||||
self.duration = duration
|
|
||||||
|
|
||||||
|
|
||||||
def frame_generator(frame_duration_ms, audio, sample_rate):
|
|
||||||
"""Generates audio frames from PCM audio data.
|
|
||||||
|
|
||||||
Takes the desired frame duration in milliseconds, the PCM data, and
|
|
||||||
the sample rate.
|
|
||||||
|
|
||||||
Yields Frames of the requested duration.
|
|
||||||
"""
|
|
||||||
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
|
|
||||||
offset = 0
|
|
||||||
timestamp = 0.0
|
|
||||||
duration = (float(n) / sample_rate) / 2.0
|
|
||||||
while offset + n < len(audio):
|
|
||||||
yield Frame(audio[offset : offset + n], timestamp, duration)
|
|
||||||
timestamp += duration
|
|
||||||
offset += n
|
|
||||||
|
|
||||||
|
|
||||||
def vad_collector(sample_rate, frame_duration_ms, padding_duration_ms, vad, frames):
|
|
||||||
"""Filters out non-voiced audio frames.
|
|
||||||
|
|
||||||
Given a webrtcvad.Vad and a source of audio frames, yields only
|
|
||||||
the voiced audio.
|
|
||||||
|
|
||||||
Uses a padded, sliding window algorithm over the audio frames.
|
|
||||||
When more than 90% of the frames in the window are voiced (as
|
|
||||||
reported by the VAD), the collector triggers and begins yielding
|
|
||||||
audio frames. Then the collector waits until 90% of the frames in
|
|
||||||
the window are unvoiced to detrigger.
|
|
||||||
|
|
||||||
The window is padded at the front and back to provide a small
|
|
||||||
amount of silence or the beginnings/endings of speech around the
|
|
||||||
voiced frames.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
|
|
||||||
sample_rate - The audio sample rate, in Hz.
|
|
||||||
frame_duration_ms - The frame duration in milliseconds.
|
|
||||||
padding_duration_ms - The amount to pad the window, in milliseconds.
|
|
||||||
vad - An instance of webrtcvad.Vad.
|
|
||||||
frames - a source of audio frames (sequence or generator).
|
|
||||||
|
|
||||||
Returns: A generator that yields PCM audio data.
|
|
||||||
"""
|
|
||||||
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
|
|
||||||
# We use a deque for our sliding window/ring buffer.
|
|
||||||
ring_buffer = collections.deque(maxlen=num_padding_frames)
|
|
||||||
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
|
|
||||||
# NOTTRIGGERED state.
|
|
||||||
triggered = False
|
|
||||||
|
|
||||||
voiced_frames = []
|
|
||||||
for frame in frames:
|
|
||||||
is_speech = vad.is_speech(frame.bytes, sample_rate)
|
|
||||||
|
|
||||||
# sys.stdout.write('1' if is_speech else '0')
|
|
||||||
if not triggered:
|
|
||||||
ring_buffer.append((frame, is_speech))
|
|
||||||
num_voiced = len([f for f, speech in ring_buffer if speech])
|
|
||||||
# If we're NOTTRIGGERED and more than 90% of the frames in
|
|
||||||
# the ring buffer are voiced frames, then enter the
|
|
||||||
# TRIGGERED state.
|
|
||||||
if num_voiced > 0.9 * ring_buffer.maxlen:
|
|
||||||
triggered = True
|
|
||||||
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
|
|
||||||
# We want to yield all the audio we see from now until
|
|
||||||
# we are NOTTRIGGERED, but we have to start with the
|
|
||||||
# audio that's already in the ring buffer.
|
|
||||||
for f, _ in ring_buffer:
|
|
||||||
voiced_frames.append(f)
|
|
||||||
ring_buffer.clear()
|
|
||||||
else:
|
else:
|
||||||
# We're in the TRIGGERED state, so collect the audio data
|
for ts in timestamps:
|
||||||
# and add it to the ring buffer.
|
# map to the new SR
|
||||||
voiced_frames.append(frame)
|
new_dict = {'start': int(ts['start']*factor), 'end': int(ts['end']*factor)}
|
||||||
ring_buffer.append((frame, is_speech))
|
new_timestamps.append(new_dict)
|
||||||
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
|
|
||||||
# If more than 90% of the frames in the ring buffer are
|
|
||||||
# unvoiced, then enter NOTTRIGGERED and yield whatever
|
|
||||||
# audio we've collected.
|
|
||||||
if num_unvoiced > 0.9 * ring_buffer.maxlen:
|
|
||||||
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
|
|
||||||
triggered = False
|
|
||||||
yield b"".join([f.bytes for f in voiced_frames])
|
|
||||||
ring_buffer.clear()
|
|
||||||
voiced_frames = []
|
|
||||||
# If we have any leftover voiced audio when we run out of input,
|
|
||||||
# yield it.
|
|
||||||
if voiced_frames:
|
|
||||||
yield b"".join([f.bytes for f in voiced_frames])
|
|
||||||
|
|
||||||
|
return new_timestamps
|
||||||
|
|
||||||
def get_vad_speech_segments(audio, sample_rate, aggressiveness=2, padding_duration_ms=300):
|
def get_vad_model_and_utils(use_cuda=False):
|
||||||
|
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
|
||||||
|
model='silero_vad',
|
||||||
|
force_reload=True,
|
||||||
|
onnx=False)
|
||||||
|
if use_cuda:
|
||||||
|
model = model.cuda()
|
||||||
|
|
||||||
vad = webrtcvad.Vad(int(aggressiveness))
|
get_speech_timestamps, save_audio, _, _, collect_chunks = utils
|
||||||
frames = list(frame_generator(30, audio, sample_rate))
|
return model, get_speech_timestamps, save_audio, collect_chunks
|
||||||
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)
|
|
||||||
|
|
||||||
return segments
|
def remove_silence(model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False):
|
||||||
|
|
||||||
|
# get the VAD model and utils functions
|
||||||
|
model, get_speech_timestamps, save_audio, collect_chunks = model_and_utils
|
||||||
|
|
||||||
|
# read ground truth wav and resample the audio for the VAD
|
||||||
|
wav, gt_sample_rate = read_audio(audio_path)
|
||||||
|
|
||||||
|
# if needed, resample the audio for the VAD model
|
||||||
|
if gt_sample_rate != vad_sample_rate:
|
||||||
|
wav_vad = resample_wav(wav, gt_sample_rate, vad_sample_rate)
|
||||||
|
else:
|
||||||
|
wav_vad = wav
|
||||||
|
|
||||||
|
if use_cuda:
|
||||||
|
wav_vad = wav_vad.cuda()
|
||||||
|
|
||||||
|
# get speech timestamps from full audio file
|
||||||
|
speech_timestamps = get_speech_timestamps(wav_vad, model, sampling_rate=vad_sample_rate, window_size_samples=768)
|
||||||
|
|
||||||
|
# map the current speech_timestamps to the sample rate of the ground truth audio
|
||||||
|
new_speech_timestamps = map_timestamps_to_new_sr(vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end)
|
||||||
|
|
||||||
|
# save audio
|
||||||
|
save_audio(out_path,
|
||||||
|
collect_chunks(new_speech_timestamps, wav), sampling_rate=gt_sample_rate)
|
||||||
|
|
||||||
|
return out_path
|
||||||
|
|
|
@ -34,5 +34,3 @@ mecab-python3==1.0.3
|
||||||
unidic-lite==1.0.8
|
unidic-lite==1.0.8
|
||||||
# gruut+supported langs
|
# gruut+supported langs
|
||||||
gruut[cs,de,es,fr,it,nl,pt,ru,sv]==2.2.3
|
gruut[cs,de,es,fr,it,nl,pt,ru,sv]==2.2.3
|
||||||
# others
|
|
||||||
webrtcvad # for VAD
|
|
||||||
|
|
Loading…
Reference in New Issue