mirror of https://github.com/coqui-ai/TTS.git
update docs
This commit is contained in:
parent
5c81500e3e
commit
ea56ec041f
|
@ -115,7 +115,7 @@ model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=Tru
|
||||||
model.cuda()
|
model.cuda()
|
||||||
|
|
||||||
print("Computing speaker latents...")
|
print("Computing speaker latents...")
|
||||||
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
|
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
|
||||||
|
|
||||||
print("Inference...")
|
print("Inference...")
|
||||||
out = model.inference(
|
out = model.inference(
|
||||||
|
@ -123,7 +123,6 @@ out = model.inference(
|
||||||
"en",
|
"en",
|
||||||
gpt_cond_latent,
|
gpt_cond_latent,
|
||||||
speaker_embedding,
|
speaker_embedding,
|
||||||
diffusion_conditioning,
|
|
||||||
temperature=0.7, # Add custom parameters here
|
temperature=0.7, # Add custom parameters here
|
||||||
)
|
)
|
||||||
torchaudio.save("xtts.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
torchaudio.save("xtts.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
||||||
|
@ -152,7 +151,7 @@ model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=Tru
|
||||||
model.cuda()
|
model.cuda()
|
||||||
|
|
||||||
print("Computing speaker latents...")
|
print("Computing speaker latents...")
|
||||||
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
|
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
|
||||||
|
|
||||||
print("Inference...")
|
print("Inference...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
@ -209,7 +208,7 @@ model.load_checkpoint(config, checkpoint_path=XTTS_CHECKPOINT, vocab_path=TOKENI
|
||||||
model.cuda()
|
model.cuda()
|
||||||
|
|
||||||
print("Computing speaker latents...")
|
print("Computing speaker latents...")
|
||||||
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=[SPEAKER_REFERENCE])
|
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[SPEAKER_REFERENCE])
|
||||||
|
|
||||||
print("Inference...")
|
print("Inference...")
|
||||||
out = model.inference(
|
out = model.inference(
|
||||||
|
@ -217,7 +216,6 @@ out = model.inference(
|
||||||
"en",
|
"en",
|
||||||
gpt_cond_latent,
|
gpt_cond_latent,
|
||||||
speaker_embedding,
|
speaker_embedding,
|
||||||
diffusion_conditioning,
|
|
||||||
temperature=0.7, # Add custom parameters here
|
temperature=0.7, # Add custom parameters here
|
||||||
)
|
)
|
||||||
torchaudio.save(OUTPUT_WAV_PATH, torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
torchaudio.save(OUTPUT_WAV_PATH, torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
||||||
|
|
Loading…
Reference in New Issue