Merge pull request #9 from eginhard/disable-wavegrad-test

test(vocoder): disable wavegrad training test in CI
This commit is contained in:
Enno Hermann 2024-03-08 19:23:40 +01:00 committed by GitHub
commit ec2346099d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 43 additions and 32 deletions

View File

@ -1,14 +1,23 @@
import glob
import os
import shutil
import unittest
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.vocoder.configs import WavegradConfig
config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = WavegradConfig(
class WavegradTrainingTest(unittest.TestCase):
# TODO: Reactivate after improving CI run times
# This test currently takes ~2h on CI (15min/step vs 8sec/step locally)
if os.getenv("GITHUB_ACTIONS") == "true":
__test__ = False
def test_train(self): # pylint: disable=no-self-use
config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = WavegradConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
@ -23,21 +32,23 @@ config = WavegradConfig(
data_path="tests/data/ljspeech",
output_path=output_path,
test_noise_schedule={"min_val": 1e-6, "max_val": 1e-2, "num_steps": 2},
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# restore the model and continue training for one more epoch
command_train = (
# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)
)
run_cli(command_train)
shutil.rmtree(continue_path)