Upgrade and Optimize TTS Code in extractttsspectrogram.ipynb (#3012)

This commit is contained in:
Anupam Maurya 2023-10-02 16:21:55 +05:30 committed by GitHub
parent 155c5fc0bd
commit f133b9d2d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 103 additions and 78 deletions

View File

@ -13,15 +13,15 @@
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"import os\n",
"import sys\n",
"import torch\n",
"import importlib\n",
"import numpy as np\n",
"from tqdm import tqdm as tqdm\n",
"from tqdm import tqdm\n",
"from torch.utils.data import DataLoader\n",
"import soundfile as sf\n",
"import pickle\n",
"from TTS.tts.datasets.dataset import TTSDataset\n",
"from TTS.tts.layers.losses import L1LossMasked\n",
"from TTS.utils.audio import AudioProcessor\n",
@ -33,8 +33,8 @@
"\n",
"%matplotlib inline\n",
"\n",
"import os\n",
"os.environ['CUDA_VISIBLE_DEVICES']='2'"
"# Configure CUDA visibility\n",
"os.environ['CUDA_VISIBLE_DEVICES'] = '2'"
]
},
{
@ -43,6 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"# Function to create directories and file names\n",
"def set_filename(wav_path, out_path):\n",
" wav_file = os.path.basename(wav_path)\n",
" file_name = wav_file.split('.')[0]\n",
@ -61,6 +62,7 @@
"metadata": {},
"outputs": [],
"source": [
"# Paths and configurations\n",
"OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n",
"DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n",
"DATASET = \"ljspeech\"\n",
@ -73,12 +75,15 @@
"QUANTIZE_BIT = None\n",
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
"\n",
"# Check CUDA availability\n",
"use_cuda = torch.cuda.is_available()\n",
"print(\" > CUDA enabled: \", use_cuda)\n",
"\n",
"# Load the configuration\n",
"C = load_config(CONFIG_PATH)\n",
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n",
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)"
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)\n",
"print(C['r'])"
]
},
{
@ -87,14 +92,13 @@
"metadata": {},
"outputs": [],
"source": [
"print(C['r'])\n",
"# if the vocabulary was passed, replace the default\n",
"# If the vocabulary was passed, replace the default\n",
"if 'characters' in C and C['characters']:\n",
" symbols, phonemes = make_symbols(**C.characters)\n",
"\n",
"# load the model\n",
"# Load the model\n",
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
"# TODO: multiple speaker\n",
"# TODO: multiple speakers\n",
"model = setup_model(C)\n",
"model.load_checkpoint(C, MODEL_FILE, eval=True)"
]
@ -105,11 +109,12 @@
"metadata": {},
"outputs": [],
"source": [
"# Load the preprocessor based on the dataset\n",
"preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n",
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
"meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n",
"dataset = TTSDataset(\n",
" checkpoint[\"config\"][\"r\"],\n",
" C,\n",
" C.text_cleaner,\n",
" False,\n",
" ap,\n",
@ -124,6 +129,24 @@
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize lists for storing results\n",
"file_idxs = []\n",
"metadata = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
"\n",
"# Create log file\n",
"log_file_path = os.path.join(OUT_PATH, \"log.txt\")\n",
"log_file = open(log_file_path, \"w\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -137,83 +160,85 @@
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"file_idxs = []\n",
"metadata = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
"# Start processing with a progress bar\n",
"with torch.no_grad():\n",
" for data in tqdm(loader):\n",
" # setup input data\n",
" text_input = data[0]\n",
" text_lengths = data[1]\n",
" linear_input = data[3]\n",
" mel_input = data[4]\n",
" mel_lengths = data[5]\n",
" stop_targets = data[6]\n",
" item_idx = data[7]\n",
" for data in tqdm(loader, desc=\"Processing\"):\n",
" try:\n",
" # setup input data\n",
" text_input, text_lengths, _, linear_input, mel_input, mel_lengths, stop_targets, item_idx = data\n",
"\n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
"\n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
" \n",
" # compute loss\n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
"\n",
" # compute mel specs from linear spec if model is Tacotron\n",
" if C.model == \"Tacotron\":\n",
" mel_specs = []\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" elif C.model == \"Tacotron2\":\n",
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
" alignments = alignments.detach().cpu().numpy()\n",
" # compute loss\n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
"\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
" # compute mel specs from linear spec if the model is Tacotron\n",
" if C.model == \"Tacotron\":\n",
" mel_specs = []\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" elif C.model == \"Tacotron2\":\n",
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
" alignments = alignments.detach().cpu().numpy()\n",
"\n",
" # quantize and save wav\n",
" if QUANTIZED_WAV:\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
"\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
" # quantize and save wav\n",
" if QUANTIZED_WAV:\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
"\n",
" metadata.append([wav_file_path, mel_path])\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
"\n",
" # for wavernn\n",
" if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
" \n",
" # for pwgan\n",
" with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
" metadata.append([wav_file_path, mel_path])\n",
"\n",
" print(np.mean(losses))\n",
" print(np.mean(postnet_losses))"
" except Exception as e:\n",
" log_file.write(f\"Error processing data: {str(e)}\\n\")\n",
"\n",
" # Calculate and log mean losses\n",
" mean_loss = np.mean(losses)\n",
" mean_postnet_loss = np.mean(postnet_losses)\n",
" log_file.write(f\"Mean Loss: {mean_loss}\\n\")\n",
" log_file.write(f\"Mean Postnet Loss: {mean_postnet_loss}\\n\")\n",
"\n",
"# Close the log file\n",
"log_file.close()\n",
"\n",
"# For wavernn\n",
"if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(os.path.join(OUT_PATH, \"dataset_ids.pkl\"), \"wb\"))\n",
"\n",
"# For pwgan\n",
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
"\n",
"# Print mean losses\n",
"print(f\"Mean Loss: {mean_loss}\")\n",
"print(f\"Mean Postnet Loss: {mean_postnet_loss}\")"
]
},
{