mirror of https://github.com/coqui-ai/TTS.git
loading last checkpoint/best_model works, deleting last best models options added, loading last best_loss added
This commit is contained in:
parent
4111df6769
commit
f2e474cd37
|
@ -541,8 +541,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define dataloaders
|
||||
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||
|
@ -552,7 +560,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model = data_depended_init(train_loader, model)
|
||||
for epoch in range(0, c.epochs):
|
||||
c_logger.print_epoch_start(epoch, c.epochs)
|
||||
train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer,
|
||||
train_avg_loss_dict, global_step = train(train_loader, model,
|
||||
criterion, optimizer,
|
||||
scheduler, ap, global_step,
|
||||
epoch)
|
||||
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
|
||||
|
@ -561,8 +570,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
target_loss = train_avg_loss_dict['avg_loss']
|
||||
if c.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_loss']
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
|
||||
OUT_PATH, model_characters)
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
|
||||
global_step, epoch, c.r, OUT_PATH,
|
||||
keep_best=keep_best, keep_after=keep_after)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -505,8 +505,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define dataloaders
|
||||
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||
|
@ -525,8 +533,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
if c.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_loss']
|
||||
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
|
||||
global_step, epoch, c.r,
|
||||
OUT_PATH, model_characters)
|
||||
global_step, epoch, c.r, OUT_PATH,
|
||||
keep_best=keep_best, keep_after=keep_after)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -585,8 +585,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
# define data loaders
|
||||
train_loader = setup_loader(ap,
|
||||
|
@ -638,7 +646,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
epoch,
|
||||
c.r,
|
||||
OUT_PATH,
|
||||
model_characters,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
||||
|
|
|
@ -545,8 +545,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model_disc)
|
||||
print(" > Discriminator has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -571,7 +579,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
model_losses=eval_avg_loss_dict)
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -393,8 +393,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_params = count_parameters(model)
|
||||
print(" > WaveGrad has {} parameters".format(num_params), flush=True)
|
||||
|
||||
if 'best_loss' not in locals():
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -416,6 +424,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
|
|
@ -416,8 +416,16 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
num_parameters = count_parameters(model_wavernn)
|
||||
print(" > Model has {} parameters".format(num_parameters), flush=True)
|
||||
|
||||
if "best_loss" not in locals():
|
||||
best_loss = float("inf")
|
||||
if args.restore_step == 0 or not args.best_path:
|
||||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
|
@ -440,6 +448,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global_step,
|
||||
epoch,
|
||||
OUT_PATH,
|
||||
keep_best=keep_best,
|
||||
keep_after=keep_after,
|
||||
model_losses=eval_avg_loss_dict,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None
|
||||
)
|
||||
|
|
|
@ -1,172 +1,174 @@
|
|||
{
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-ddc",
|
||||
"run_description": "tacotron2 with DDC and differential spectral loss.",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
// stft parameters
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// Griffin-Lim
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 1,
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
// VOCABULARY PARAMETERS
|
||||
// if custom character set is not defined,
|
||||
// default set in symbols.py is used
|
||||
// "characters":{
|
||||
// "pad": "_",
|
||||
// "eos": "~",
|
||||
// "bos": "^",
|
||||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||||
// "punctuations":"!'(),-.:;? ",
|
||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||
// },
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||
"eval_batch_size":16,
|
||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
|
||||
|
||||
// LOSS SETTINGS
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
|
||||
// OPTIMIZER
|
||||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||
|
||||
// TACOTRON PRENET
|
||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": false, // enable/disable dropout at prenet.
|
||||
|
||||
// TACOTRON ATTENTION
|
||||
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
|
||||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid.
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||||
|
||||
// STOPNET
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log training on console.
|
||||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
|
||||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||||
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
|
||||
"use_noise_augment": true,
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
|
||||
// PHONEMES
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": false, // use global style tokens
|
||||
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10,
|
||||
"gst_use_speaker_embedding": false
|
||||
},
|
||||
|
||||
// DATASETS
|
||||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||||
[
|
||||
{
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/",
|
||||
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
|
||||
"meta_file_val": null
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
{
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-ddc",
|
||||
"run_description": "tacotron2 with DDC and differential spectral loss.",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
// stft parameters
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// Griffin-Lim
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 1,
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
// VOCABULARY PARAMETERS
|
||||
// if custom character set is not defined,
|
||||
// default set in symbols.py is used
|
||||
// "characters":{
|
||||
// "pad": "_",
|
||||
// "eos": "~",
|
||||
// "bos": "^",
|
||||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||||
// "punctuations":"!'(),-.:;? ",
|
||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||
// },
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||
"eval_batch_size":16,
|
||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
|
||||
|
||||
// LOSS SETTINGS
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
|
||||
// OPTIMIZER
|
||||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||
|
||||
// TACOTRON PRENET
|
||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": false, // enable/disable dropout at prenet.
|
||||
|
||||
// TACOTRON ATTENTION
|
||||
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
|
||||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid.
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||||
|
||||
// STOPNET
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log training on console.
|
||||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
|
||||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||||
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
|
||||
"use_noise_augment": true,
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
|
||||
// PHONEMES
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": false, // use global style tokens
|
||||
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10,
|
||||
"gst_use_speaker_embedding": false
|
||||
},
|
||||
|
||||
// DATASETS
|
||||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||||
[
|
||||
{
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/",
|
||||
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
|
||||
"meta_file_val": null
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
|
|
@ -93,6 +93,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
"apex_amp_level": null,
|
||||
|
||||
|
|
|
@ -105,6 +105,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -1,171 +1,173 @@
|
|||
{
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-dcattn",
|
||||
"run_description": "tacotron2 with dynamic convolution attention.",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
// stft parameters
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// Griffin-Lim
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 1,
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
// VOCABULARY PARAMETERS
|
||||
// if custom character set is not defined,
|
||||
// default set in symbols.py is used
|
||||
// "characters":{
|
||||
// "pad": "_",
|
||||
// "eos": "~",
|
||||
// "bos": "^",
|
||||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||||
// "punctuations":"!'(),-.:;? ",
|
||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||
// },
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||
"eval_batch_size":16,
|
||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
|
||||
|
||||
// LOSS SETTINGS
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||
"ga_alpha": 0.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
|
||||
// OPTIMIZER
|
||||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||
|
||||
// TACOTRON PRENET
|
||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": false, // enable/disable dropout at prenet.
|
||||
|
||||
// TACOTRON ATTENTION
|
||||
"attention_type": "dynamic_convolution", // 'original' , 'graves', 'dynamic_convolution'
|
||||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||||
"attention_norm": "softmax", // softmax or sigmoid.
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||
"double_decoder_consistency": false, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||||
|
||||
// STOPNET
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log training on console.
|
||||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
|
||||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||||
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
|
||||
// PHONEMES
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": false, // use global style tokens
|
||||
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10,
|
||||
"gst_use_speaker_embedding": false
|
||||
},
|
||||
|
||||
// DATASETS
|
||||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||||
[
|
||||
{
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/",
|
||||
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
|
||||
"meta_file_val": null
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
{
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-dcattn",
|
||||
"run_description": "tacotron2 with dynamic convolution attention.",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
// stft parameters
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// Griffin-Lim
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 1,
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
// VOCABULARY PARAMETERS
|
||||
// if custom character set is not defined,
|
||||
// default set in symbols.py is used
|
||||
// "characters":{
|
||||
// "pad": "_",
|
||||
// "eos": "~",
|
||||
// "bos": "^",
|
||||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||||
// "punctuations":"!'(),-.:;? ",
|
||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||
// },
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||
"eval_batch_size":16,
|
||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
|
||||
|
||||
// LOSS SETTINGS
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||
"ga_alpha": 0.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
|
||||
// OPTIMIZER
|
||||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||
|
||||
// TACOTRON PRENET
|
||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": false, // enable/disable dropout at prenet.
|
||||
|
||||
// TACOTRON ATTENTION
|
||||
"attention_type": "dynamic_convolution", // 'original' , 'graves', 'dynamic_convolution'
|
||||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||||
"attention_norm": "softmax", // softmax or sigmoid.
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||
"double_decoder_consistency": false, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||||
|
||||
// STOPNET
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log training on console.
|
||||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
|
||||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||||
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
|
||||
// PHONEMES
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": false, // use global style tokens
|
||||
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10,
|
||||
"gst_use_speaker_embedding": false
|
||||
},
|
||||
|
||||
// DATASETS
|
||||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||||
[
|
||||
{
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/",
|
||||
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
|
||||
"meta_file_val": null
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
|
|
@ -109,6 +109,8 @@
|
|||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n
|
||||
"mixed_precision": false,
|
||||
|
||||
|
|
|
@ -42,6 +42,11 @@ def parse_arguments(argv):
|
|||
type=str,
|
||||
help="Model file to be restored. Use to finetune a model.",
|
||||
default="")
|
||||
parser.add_argument(
|
||||
"--best_path",
|
||||
type=str,
|
||||
help="Best model file to be used for extracting best loss.",
|
||||
default="")
|
||||
parser.add_argument(
|
||||
"--config_path",
|
||||
type=str,
|
||||
|
@ -66,11 +71,11 @@ def parse_arguments(argv):
|
|||
return parser.parse_args()
|
||||
|
||||
|
||||
def get_last_checkpoint(path):
|
||||
"""Get latest checkpoint from a list of filenames.
|
||||
def get_last_models(path):
|
||||
"""Get latest checkpoint or/and best model in path.
|
||||
|
||||
It is based on globbing for `*.pth.tar` and the RegEx
|
||||
`checkpoint_([0-9]+)`.
|
||||
`(checkpoint|best_model)_([0-9]+)`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -80,7 +85,7 @@ def get_last_checkpoint(path):
|
|||
Raises
|
||||
------
|
||||
ValueError
|
||||
If no checkpoint files are found.
|
||||
If no checkpoint or best_model files are found.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -88,22 +93,37 @@ def get_last_checkpoint(path):
|
|||
Last checkpoint filename.
|
||||
|
||||
"""
|
||||
last_checkpoint_num = 0
|
||||
last_checkpoint = None
|
||||
filenames = glob.glob(
|
||||
os.path.join(path, "/*.pth.tar"))
|
||||
for filename in filenames:
|
||||
try:
|
||||
checkpoint_num = int(
|
||||
re.search(r"checkpoint_([0-9]+)", filename).groups()[0])
|
||||
if checkpoint_num > last_checkpoint_num:
|
||||
last_checkpoint_num = checkpoint_num
|
||||
last_checkpoint = filename
|
||||
except AttributeError: # if there's no match in the filename
|
||||
pass
|
||||
if last_checkpoint is None:
|
||||
raise ValueError(f"No checkpoints in {path}!")
|
||||
return last_checkpoint
|
||||
file_names = glob.glob(os.path.join(path, "*.pth.tar"))
|
||||
last_models = {}
|
||||
last_model_nums = {}
|
||||
for key in ['checkpoint', 'best_model']:
|
||||
last_model_num = 0
|
||||
last_model = None
|
||||
for file_name in file_names:
|
||||
try:
|
||||
model_num = int(re.search(
|
||||
f"{key}_([0-9]+)", file_name).groups()[0])
|
||||
if model_num > last_model_num:
|
||||
last_model_num = model_num
|
||||
last_model = file_name
|
||||
except AttributeError: # if there's no match in the filename
|
||||
continue
|
||||
last_models[key] = last_model
|
||||
last_model_nums[key] = last_model_num
|
||||
|
||||
# check what models were found
|
||||
if not last_models:
|
||||
raise ValueError(f"No models found in continue path {path}!")
|
||||
elif 'checkpoint' not in last_models: # no checkpoint just best model
|
||||
last_models['checkpoint'] = last_models['best_model']
|
||||
elif 'best_model' not in last_models: # no best model
|
||||
# this shouldn't happen, but let's handle it just in case
|
||||
last_models['best_model'] = None
|
||||
# finally check if last best model is more recent than checkpoint
|
||||
elif last_model_nums['best_model'] > last_model_nums['checkpoint']:
|
||||
last_models['checkpoint'] = last_models['best_model']
|
||||
|
||||
return last_models['checkpoint'], last_models['best_model']
|
||||
|
||||
|
||||
def process_args(args, model_type):
|
||||
|
@ -131,15 +151,12 @@ def process_args(args, model_type):
|
|||
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does logging to the console.
|
||||
tb_logger (TTS.utils.tensorboard.TensorboardLogger): Class that does the TensorBoard loggind.
|
||||
"""
|
||||
if args.continue_path != "":
|
||||
if args.continue_path:
|
||||
args.output_path = args.continue_path
|
||||
args.config_path = os.path.join(args.continue_path, "config.json")
|
||||
list_of_files = glob.glob(
|
||||
os.path.join(args.continue_path, "*.pth.tar")
|
||||
) # * means all if need specific format then *.csv
|
||||
args.restore_path = max(list_of_files, key=os.path.getctime)
|
||||
# checkpoint number based continuing
|
||||
# args.restore_path = get_last_checkpoint(args.continue_path)
|
||||
args.restore_path, best_model = get_last_models(args.continue_path)
|
||||
if not args.best_path:
|
||||
args.best_path = best_model
|
||||
print(f" > Training continues for {args.restore_path}")
|
||||
|
||||
# setup output paths and read configs
|
||||
|
@ -165,7 +182,7 @@ def process_args(args, model_type):
|
|||
print(" > Mixed precision mode is ON")
|
||||
|
||||
out_path = args.continue_path
|
||||
if args.continue_path == "":
|
||||
if not out_path:
|
||||
out_path = create_experiment_folder(c.output_path, c.run_name,
|
||||
args.debug)
|
||||
|
||||
|
|
|
@ -138,6 +138,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -128,6 +128,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -141,6 +141,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -130,6 +130,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -124,6 +124,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -103,6 +103,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 5000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -89,6 +89,8 @@
|
|||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
import glob
|
||||
import torch
|
||||
import datetime
|
||||
import pickle as pickle_tts
|
||||
|
@ -61,12 +62,13 @@ def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc,
|
|||
scheduler_disc, current_step, epoch, checkpoint_path, **kwargs)
|
||||
|
||||
|
||||
def save_best_model(target_loss, best_loss, model, optimizer, scheduler,
|
||||
def save_best_model(current_loss, best_loss, model, optimizer, scheduler,
|
||||
model_disc, optimizer_disc, scheduler_disc, current_step,
|
||||
epoch, output_folder, **kwargs):
|
||||
if target_loss < best_loss:
|
||||
file_name = 'best_model.pth.tar'
|
||||
checkpoint_path = os.path.join(output_folder, file_name)
|
||||
epoch, out_path, keep_best=False, keep_after=10000,
|
||||
**kwargs):
|
||||
if current_loss < best_loss:
|
||||
best_model_name = f'best_model_{current_step}.pth.tar'
|
||||
checkpoint_path = os.path.join(out_path, best_model_name)
|
||||
print(" > BEST MODEL : {}".format(checkpoint_path))
|
||||
save_model(model,
|
||||
optimizer,
|
||||
|
@ -77,7 +79,21 @@ def save_best_model(target_loss, best_loss, model, optimizer, scheduler,
|
|||
current_step,
|
||||
epoch,
|
||||
checkpoint_path,
|
||||
model_loss=target_loss,
|
||||
model_loss=current_loss,
|
||||
**kwargs)
|
||||
best_loss = target_loss
|
||||
# only delete previous if current is saved successfully
|
||||
if not keep_best or (current_step < keep_after):
|
||||
model_names = glob.glob(
|
||||
os.path.join(out_path, 'best_model*.pth.tar'))
|
||||
for model_name in model_names:
|
||||
if os.path.basename(model_name) == best_model_name:
|
||||
continue
|
||||
os.remove(model_name)
|
||||
# create symlink to best model for convinience
|
||||
link_name = 'best_model.pth.tar'
|
||||
link_path = os.path.join(out_path, link_name)
|
||||
if os.path.islink(link_path) or os.path.isfile(link_path):
|
||||
os.remove(link_path)
|
||||
os.symlink(best_model_name, os.path.join(out_path, link_name))
|
||||
best_loss = current_loss
|
||||
return best_loss
|
||||
|
|
Loading…
Reference in New Issue