mirror of https://github.com/coqui-ai/TTS.git
Add emotion embedding in the encoder
This commit is contained in:
parent
314f95f974
commit
f31ba25233
|
@ -38,6 +38,7 @@ class TextEncoder(nn.Module):
|
|||
kernel_size: int,
|
||||
dropout_p: float,
|
||||
language_emb_dim: int = None,
|
||||
emotion_emb_dim: int = None,
|
||||
):
|
||||
"""Text Encoder for VITS model.
|
||||
|
||||
|
@ -62,6 +63,9 @@ class TextEncoder(nn.Module):
|
|||
if language_emb_dim:
|
||||
hidden_channels += language_emb_dim
|
||||
|
||||
if emotion_emb_dim:
|
||||
hidden_channels += emotion_emb_dim
|
||||
|
||||
self.encoder = RelativePositionTransformer(
|
||||
in_channels=hidden_channels,
|
||||
out_channels=hidden_channels,
|
||||
|
@ -77,7 +81,7 @@ class TextEncoder(nn.Module):
|
|||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, lang_emb=None):
|
||||
def forward(self, x, x_lengths, lang_emb=None, emo_emb=None):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, T]`
|
||||
|
@ -90,6 +94,10 @@ class TextEncoder(nn.Module):
|
|||
if lang_emb is not None:
|
||||
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
|
||||
|
||||
# concat the emotion emb in embedding chars
|
||||
if emo_emb is not None:
|
||||
x = torch.cat((x, emo_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
|
||||
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t]
|
||||
|
||||
|
|
|
@ -580,6 +580,7 @@ class Vits(BaseTTS):
|
|||
self.args.kernel_size_text_encoder,
|
||||
self.args.dropout_p_text_encoder,
|
||||
language_emb_dim=self.embedded_language_dim,
|
||||
emotion_emb_dim=self.args.emotion_embedding_dim,
|
||||
)
|
||||
|
||||
self.posterior_encoder = PosteriorEncoder(
|
||||
|
@ -603,7 +604,7 @@ class Vits(BaseTTS):
|
|||
|
||||
if self.args.use_sdp:
|
||||
self.duration_predictor = StochasticDurationPredictor(
|
||||
self.args.hidden_channels,
|
||||
self.args.hidden_channels + self.args.emotion_embedding_dim,
|
||||
192,
|
||||
3,
|
||||
self.args.dropout_p_duration_predictor,
|
||||
|
@ -613,7 +614,7 @@ class Vits(BaseTTS):
|
|||
)
|
||||
else:
|
||||
self.duration_predictor = DurationPredictor(
|
||||
self.args.hidden_channels,
|
||||
self.args.hidden_channels + self.args.emotion_embedding_dim,
|
||||
256,
|
||||
3,
|
||||
self.args.dropout_p_duration_predictor,
|
||||
|
@ -956,7 +957,7 @@ class Vits(BaseTTS):
|
|||
if self.args.use_language_embedding and lid is not None:
|
||||
lang_emb = self.emb_l(lid).unsqueeze(-1)
|
||||
|
||||
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
|
||||
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, emo_emb=eg)
|
||||
|
||||
# posterior encoder
|
||||
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
|
||||
|
@ -1081,7 +1082,7 @@ class Vits(BaseTTS):
|
|||
if self.args.use_language_embedding and lid is not None:
|
||||
lang_emb = self.emb_l(lid).unsqueeze(-1)
|
||||
|
||||
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
|
||||
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, emo_emb=eg)
|
||||
|
||||
if self.args.use_sdp:
|
||||
logw = self.duration_predictor(
|
||||
|
@ -1659,9 +1660,8 @@ class Vits(BaseTTS):
|
|||
|
||||
if config.model_args.encoder_model_path and speaker_manager is not None:
|
||||
speaker_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
|
||||
elif config.model_args.encoder_model_path and emotion_manager is not None:
|
||||
if config.model_args.encoder_model_path and emotion_manager is not None:
|
||||
emotion_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
|
||||
|
||||
return Vits(new_config, ap, tokenizer, speaker_manager, language_manager, emotion_manager=emotion_manager)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue