Add emotion embedding in the encoder

This commit is contained in:
Edresson Casanova 2022-03-31 19:14:41 -03:00
parent 314f95f974
commit f31ba25233
2 changed files with 15 additions and 7 deletions

View File

@ -38,6 +38,7 @@ class TextEncoder(nn.Module):
kernel_size: int,
dropout_p: float,
language_emb_dim: int = None,
emotion_emb_dim: int = None,
):
"""Text Encoder for VITS model.
@ -62,6 +63,9 @@ class TextEncoder(nn.Module):
if language_emb_dim:
hidden_channels += language_emb_dim
if emotion_emb_dim:
hidden_channels += emotion_emb_dim
self.encoder = RelativePositionTransformer(
in_channels=hidden_channels,
out_channels=hidden_channels,
@ -77,7 +81,7 @@ class TextEncoder(nn.Module):
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, lang_emb=None):
def forward(self, x, x_lengths, lang_emb=None, emo_emb=None):
"""
Shapes:
- x: :math:`[B, T]`
@ -90,6 +94,10 @@ class TextEncoder(nn.Module):
if lang_emb is not None:
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
# concat the emotion emb in embedding chars
if emo_emb is not None:
x = torch.cat((x, emo_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t]

View File

@ -580,6 +580,7 @@ class Vits(BaseTTS):
self.args.kernel_size_text_encoder,
self.args.dropout_p_text_encoder,
language_emb_dim=self.embedded_language_dim,
emotion_emb_dim=self.args.emotion_embedding_dim,
)
self.posterior_encoder = PosteriorEncoder(
@ -603,7 +604,7 @@ class Vits(BaseTTS):
if self.args.use_sdp:
self.duration_predictor = StochasticDurationPredictor(
self.args.hidden_channels,
self.args.hidden_channels + self.args.emotion_embedding_dim,
192,
3,
self.args.dropout_p_duration_predictor,
@ -613,7 +614,7 @@ class Vits(BaseTTS):
)
else:
self.duration_predictor = DurationPredictor(
self.args.hidden_channels,
self.args.hidden_channels + self.args.emotion_embedding_dim,
256,
3,
self.args.dropout_p_duration_predictor,
@ -956,7 +957,7 @@ class Vits(BaseTTS):
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, emo_emb=eg)
# posterior encoder
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
@ -1081,7 +1082,7 @@ class Vits(BaseTTS):
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb, emo_emb=eg)
if self.args.use_sdp:
logw = self.duration_predictor(
@ -1659,9 +1660,8 @@ class Vits(BaseTTS):
if config.model_args.encoder_model_path and speaker_manager is not None:
speaker_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
elif config.model_args.encoder_model_path and emotion_manager is not None:
if config.model_args.encoder_model_path and emotion_manager is not None:
emotion_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
return Vits(new_config, ap, tokenizer, speaker_manager, language_manager, emotion_manager=emotion_manager)