mirror of https://github.com/coqui-ai/TTS.git
fix Lint check
This commit is contained in:
parent
a2ee48c28e
commit
f91b9eeda1
|
@ -229,14 +229,14 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
|
||||||
items = []
|
items = []
|
||||||
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
||||||
for meta_file in meta_files:
|
for meta_file in meta_files:
|
||||||
txt, speaker_id, txt_file = os.path.relpath(meta_file,root_path).split(os.sep)
|
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
|
||||||
file_id = txt_file.split('.')[0]
|
file_id = txt_file.split('.')[0]
|
||||||
if isinstance(test_speakers, list): # if is list ignore this speakers ids
|
if isinstance(test_speakers, list): # if is list ignore this speakers ids
|
||||||
if speaker_id in test_speakers:
|
if speaker_id in test_speakers:
|
||||||
continue
|
continue
|
||||||
with open(meta_file) as file_text:
|
with open(meta_file) as file_text:
|
||||||
text = file_text.readlines()[0]
|
text = file_text.readlines()[0]
|
||||||
wav_file = os.path.join(root_path, wavs_path, speaker_id,file_id+'.wav')
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id+'.wav')
|
||||||
items.append([text, wav_file, speaker_id])
|
items.append([text, wav_file, speaker_id])
|
||||||
|
|
||||||
return items
|
return items
|
|
@ -58,7 +58,7 @@ class Tacotron2(TacotronAbstract):
|
||||||
else:
|
else:
|
||||||
# if speaker_embedding_dim is not None we need use speaker embedding per sample
|
# if speaker_embedding_dim is not None we need use speaker embedding per sample
|
||||||
self.embeddings_per_sample = True
|
self.embeddings_per_sample = True
|
||||||
|
|
||||||
# speaker and gst embeddings is concat in decoder input
|
# speaker and gst embeddings is concat in decoder input
|
||||||
if num_speakers > 1:
|
if num_speakers > 1:
|
||||||
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
|
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
|
||||||
|
@ -73,7 +73,7 @@ class Tacotron2(TacotronAbstract):
|
||||||
if not self.embeddings_per_sample:
|
if not self.embeddings_per_sample:
|
||||||
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
|
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
|
||||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||||
|
|
||||||
# base model layers
|
# base model layers
|
||||||
self.encoder = Encoder(encoder_in_features)
|
self.encoder = Encoder(encoder_in_features)
|
||||||
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
|
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
|
||||||
|
|
Loading…
Reference in New Issue