linter fix

This commit is contained in:
Eren Golge 2019-10-04 18:36:32 +02:00
parent 0849e3c42f
commit fbfa20e3b3
1 changed files with 170 additions and 141 deletions

311
train.py
View File

@ -15,13 +15,12 @@ from distribute import (DistributedSampler, apply_gradient_allreduce,
init_distributed, reduce_tensor)
from TTS.layers.losses import L1LossMasked, MSELossMasked
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (NoamLR, check_update, count_parameters,
create_experiment_folder, get_git_branch,
load_config, remove_experiment_folder,
save_best_model, save_checkpoint, adam_weight_decay,
set_init_dict, copy_config_file, setup_model,
split_dataset, gradual_training_scheduler, KeepAverage,
set_weight_decay)
from TTS.utils.generic_utils import (
NoamLR, check_update, count_parameters, create_experiment_folder,
get_git_branch, load_config, remove_experiment_folder, save_best_model,
save_checkpoint, adam_weight_decay, set_init_dict, copy_config_file,
setup_model, gradual_training_scheduler, KeepAverage,
set_weight_decay)
from TTS.utils.logger import Logger
from TTS.utils.speakers import load_speaker_mapping, save_speaker_mapping, \
get_speakers
@ -32,7 +31,6 @@ from TTS.datasets.preprocess import load_meta_data
from TTS.utils.radam import RAdam
from TTS.utils.measures import alignment_diagonal_score
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(54321)
@ -51,7 +49,8 @@ def setup_loader(ap, is_val=False, verbose=False):
c.text_cleaner,
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
batch_group_size=0 if is_val else c.batch_group_size *
c.batch_size,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
@ -87,13 +86,14 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
'avg_align_score': 0,
'avg_step_time': 0,
'avg_loader_time': 0,
'avg_alignment_score': 0}
'avg_alignment_score': 0
}
keep_avg = KeepAverage()
keep_avg.add_values(train_values)
print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) /
(c.batch_size * num_gpus))
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
@ -104,8 +104,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
linear_input = data[3] if c.model in [
"Tacotron", "TacotronGST"] else None
linear_input = data[3] if c.model in ["Tacotron", "TacotronGST"
] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
@ -114,8 +114,9 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
loader_time = time.time() - end_time
if c.use_speaker_embedding:
speaker_ids = [speaker_mapping[speaker_name]
for speaker_name in speaker_names]
speaker_ids = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
else:
speaker_ids = None
@ -123,8 +124,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
# set stop targets view, we predict a single stop token per r frames prediction
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(
2).float().squeeze(2)
stop_targets = (stop_targets.sum(2) >
0.0).unsqueeze(2).float().squeeze(2)
global_step += 1
@ -141,8 +142,9 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
linear_input = linear_input.cuda(non_blocking=True) if c.model in [
"Tacotron", "TacotronGST"] else None
linear_input = linear_input.cuda(
non_blocking=True) if c.model in ["Tacotron", "TacotronGST"
] else None
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
@ -152,16 +154,16 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
# loss computation
stop_loss = criterion_st(
stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
stop_loss = criterion_st(stop_tokens,
stop_targets) if c.stopnet else torch.zeros(1)
if c.loss_masking:
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(
postnet_output, linear_input, mel_lengths)
postnet_loss = criterion(postnet_output, linear_input,
mel_lengths)
else:
postnet_loss = criterion(
postnet_output, mel_input, mel_lengths)
postnet_loss = criterion(postnet_output, mel_input,
mel_lengths)
else:
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
@ -199,10 +201,10 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
"DecoderLoss:{:.5f} StopLoss:{:.5f} AlignScore:{:.4f} GradNorm:{:.5f} "
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
"LoaderTime:{:.2f} LR:{:.6f}".format(
num_iter, batch_n_iter, global_step,
postnet_loss.item(), decoder_loss.item(), stop_loss.item(), align_score,
grad_norm, grad_norm_st, avg_text_length, avg_spec_length, step_time,
loader_time, current_lr),
num_iter, batch_n_iter, global_step, postnet_loss.item(),
decoder_loss.item(), stop_loss.item(), align_score,
grad_norm, grad_norm_st, avg_text_length, avg_spec_length,
step_time, loader_time, current_lr),
flush=True)
# aggregate losses from processes
@ -210,26 +212,36 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
loss = reduce_tensor(loss.data, num_gpus)
stop_loss = reduce_tensor(
stop_loss.data, num_gpus) if c.stopnet else stop_loss
stop_loss = reduce_tensor(stop_loss.data,
num_gpus) if c.stopnet else stop_loss
if args.rank == 0:
update_train_values = {'avg_postnet_loss': float(postnet_loss.item()),
'avg_decoder_loss': float(decoder_loss.item()),
'avg_stop_loss': stop_loss if isinstance(stop_loss, float) else float(stop_loss.item()),
'avg_step_time': step_time,
'avg_loader_time': loader_time}
update_train_values = {
'avg_postnet_loss':
float(postnet_loss.item()),
'avg_decoder_loss':
float(decoder_loss.item()),
'avg_stop_loss':
stop_loss
if isinstance(stop_loss, float) else float(stop_loss.item()),
'avg_step_time':
step_time,
'avg_loader_time':
loader_time
}
keep_avg.update_values(update_train_values)
# Plot Training Iter Stats
# reduce TB load
if global_step % 10 == 0:
iter_stats = {"loss_posnet": postnet_loss.item(),
"loss_decoder": decoder_loss.item(),
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
"step_time": step_time}
iter_stats = {
"loss_posnet": postnet_loss.item(),
"loss_decoder": decoder_loss.item(),
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
"step_time": step_time
}
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
@ -242,7 +254,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
# Diagnostic visualizations
const_spec = postnet_output[0].data.cpu().numpy()
gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
"Tacotron", "TacotronGST"] else mel_input[0].data.cpu().numpy()
"Tacotron", "TacotronGST"
] else mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
@ -263,23 +276,26 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
end_time = time.time()
# print epoch stats
print(
" | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
"AvgStopLoss:{:.5f} EpochTime:{:.2f} "
"AvgStepTime:{:.2f} AvgLoaderTime:{:.2f}".format(global_step, keep_avg['avg_postnet_loss'], keep_avg['avg_decoder_loss'],
keep_avg['avg_stop_loss'], keep_avg['avg_align_score'],
epoch_time, keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
flush=True)
print(" | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} "
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
"AvgStopLoss:{:.5f} EpochTime:{:.2f} "
"AvgStepTime:{:.2f} AvgLoaderTime:{:.2f}".format(
global_step, keep_avg['avg_postnet_loss'],
keep_avg['avg_decoder_loss'], keep_avg['avg_stop_loss'],
keep_avg['avg_align_score'], epoch_time,
keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
flush=True)
# Plot Epoch Stats
if args.rank == 0:
# Plot Training Epoch Stats
epoch_stats = {"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stop_loss": keep_avg['avg_stop_loss'],
"alignment_score": keep_avg['avg_align_score'],
"epoch_time": epoch_time}
epoch_stats = {
"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stop_loss": keep_avg['avg_stop_loss'],
"alignment_score": keep_avg['avg_align_score'],
"epoch_time": epoch_time
}
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
@ -292,10 +308,12 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
speaker_mapping = load_speaker_mapping(OUT_PATH)
model.eval()
epoch_time = 0
eval_values_dict = {'avg_postnet_loss': 0,
'avg_decoder_loss': 0,
'avg_stop_loss': 0,
'avg_align_score': 0}
eval_values_dict = {
'avg_postnet_loss': 0,
'avg_decoder_loss': 0,
'avg_stop_loss': 0,
'avg_align_score': 0
}
keep_avg = KeepAverage()
keep_avg.add_values(eval_values_dict)
print("\n > Validation")
@ -319,14 +337,17 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
text_lengths = data[1]
speaker_names = data[2]
linear_input = data[3] if c.model in [
"Tacotron", "TacotronGST"] else None
"Tacotron", "TacotronGST"
] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
if c.use_speaker_embedding:
speaker_ids = [speaker_mapping[speaker_name]
for speaker_name in speaker_names]
speaker_ids = [
speaker_mapping[speaker_name]
for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
else:
speaker_ids = None
@ -335,8 +356,8 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r,
-1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(
2).float().squeeze(2)
stop_targets = (stop_targets.sum(2) >
0.0).unsqueeze(2).float().squeeze(2)
# dispatch data to GPU
if use_cuda:
@ -344,7 +365,8 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
linear_input = linear_input.cuda() if c.model in [
"Tacotron", "TacotronGST"] else None
"Tacotron", "TacotronGST"
] else None
stop_targets = stop_targets.cuda()
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda()
@ -358,14 +380,14 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
stop_loss = criterion_st(
stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
if c.loss_masking:
decoder_loss = criterion(
decoder_output, mel_input, mel_lengths)
decoder_loss = criterion(decoder_output, mel_input,
mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(
postnet_output, linear_input, mel_lengths)
postnet_loss = criterion(postnet_output, linear_input,
mel_lengths)
else:
postnet_loss = criterion(
postnet_output, mel_input, mel_lengths)
postnet_loss = criterion(postnet_output, mel_input,
mel_lengths)
else:
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
@ -388,19 +410,25 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
if c.stopnet:
stop_loss = reduce_tensor(stop_loss.data, num_gpus)
keep_avg.update_values({'avg_postnet_loss': float(postnet_loss.item()),
'avg_decoder_loss': float(decoder_loss.item()),
'avg_stop_loss': float(stop_loss.item())})
keep_avg.update_values({
'avg_postnet_loss':
float(postnet_loss.item()),
'avg_decoder_loss':
float(decoder_loss.item()),
'avg_stop_loss':
float(stop_loss.item())
})
if num_iter % c.print_step == 0:
print(
" | > TotalLoss: {:.5f} PostnetLoss: {:.5f} - {:.5f} DecoderLoss:{:.5f} - {:.5f} "
"StopLoss: {:.5f} - {:.5f} AlignScore: {:.4f} : {:.4f}".format(
loss.item(),
postnet_loss.item(), keep_avg['avg_postnet_loss'],
decoder_loss.item(), keep_avg['avg_decoder_loss'],
stop_loss.item(), keep_avg['avg_stop_loss'],
align_score, keep_avg['avg_align_score']),
"StopLoss: {:.5f} - {:.5f} AlignScore: {:.4f} : {:.4f}"
.format(loss.item(), postnet_loss.item(),
keep_avg['avg_postnet_loss'],
decoder_loss.item(),
keep_avg['avg_decoder_loss'], stop_loss.item(),
keep_avg['avg_stop_loss'], align_score,
keep_avg['avg_align_score']),
flush=True)
if args.rank == 0:
@ -408,7 +436,8 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
idx = np.random.randint(mel_input.shape[0])
const_spec = postnet_output[idx].data.cpu().numpy()
gt_spec = linear_input[idx].data.cpu().numpy() if c.model in [
"Tacotron", "TacotronGST"] else mel_input[idx].data.cpu().numpy()
"Tacotron", "TacotronGST"
] else mel_input[idx].data.cpu().numpy()
align_img = alignments[idx].data.cpu().numpy()
eval_figures = {
@ -423,13 +452,15 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
eval_audio = ap.inv_spectrogram(const_spec.T)
else:
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
tb_logger.tb_eval_audios(
global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
c.audio["sample_rate"])
# Plot Validation Stats
epoch_stats = {"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stop_loss": keep_avg['avg_stop_loss']}
epoch_stats = {
"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stop_loss": keep_avg['avg_stop_loss']
}
tb_logger.tb_eval_stats(global_step, epoch_stats)
if args.rank == 0 and epoch > c.test_delay_epochs:
@ -442,7 +473,11 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens = synthesis(
model, test_sentence, c, use_cuda, ap,
model,
test_sentence,
c,
use_cuda,
ap,
speaker_id=speaker_id,
style_wav=style_wav)
file_path = os.path.join(AUDIO_PATH, str(global_step))
@ -451,15 +486,15 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
"TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios['{}-audio'.format(idx)] = wav
test_figures['{}-prediction'.format(idx)
] = plot_spectrogram(postnet_output, ap)
test_figures['{}-alignment'.format(idx)
] = plot_alignment(alignment)
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
postnet_output, ap)
test_figures['{}-alignment'.format(idx)] = plot_alignment(
alignment)
except:
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(
global_step, test_audios, c.audio['sample_rate'])
tb_logger.tb_test_audios(global_step, test_audios,
c.audio['sample_rate'])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg['avg_postnet_loss']
@ -490,8 +525,7 @@ def main(args): # pylint: disable=redefined-outer-name
"introduce new speakers to " \
"a previously trained model."
else:
speaker_mapping = {name: i
for i, name in enumerate(speakers)}
speaker_mapping = {name: i for i, name in enumerate(speakers)}
save_speaker_mapping(OUT_PATH, speaker_mapping)
num_speakers = len(speaker_mapping)
print("Training with {} speakers: {}".format(num_speakers,
@ -506,18 +540,20 @@ def main(args): # pylint: disable=redefined-outer-name
params = set_weight_decay(model, c.wd)
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
if c.stopnet and c.separate_stopnet:
optimizer_st = RAdam(
model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
lr=c.lr,
weight_decay=0)
else:
optimizer_st = None
if c.loss_masking:
criterion = L1LossMasked() if c.model in [
"Tacotron", "TacotronGST"] else MSELossMasked()
criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"
] else MSELossMasked()
else:
criterion = nn.L1Loss() if c.model in [
"Tacotron", "TacotronGST"] else nn.MSELoss()
criterion_st = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(20.0)) if c.stopnet else None
criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"
] else nn.MSELoss()
criterion_st = nn.BCEWithLogitsLoss(
pos_weight=torch.tensor(20.0)) if c.stopnet else None
if args.restore_path:
checkpoint = torch.load(args.restore_path)
@ -536,8 +572,8 @@ def main(args): # pylint: disable=redefined-outer-name
del model_dict
for group in optimizer.param_groups:
group['lr'] = c.lr
print(
" > Model restored from step %d" % checkpoint['step'], flush=True)
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
@ -553,10 +589,9 @@ def main(args): # pylint: disable=redefined-outer-name
model = apply_gradient_allreduce(model)
if c.lr_decay:
scheduler = NoamLR(
optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
scheduler = NoamLR(optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
@ -576,14 +611,13 @@ def main(args): # pylint: disable=redefined-outer-name
print(" > Number of outputs per iteration:", model.decoder.r)
train_loss, global_step = train(model, criterion, criterion_st,
optimizer, optimizer_st, scheduler,
ap, global_step, epoch)
val_loss = evaluate(model, criterion, criterion_st,
ap, global_step, epoch)
print(
" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
train_loss, val_loss),
flush=True)
optimizer, optimizer_st, scheduler, ap,
global_step, epoch)
val_loss = evaluate(model, criterion, criterion_st, ap, global_step,
epoch)
print(" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
train_loss, val_loss),
flush=True)
target_loss = train_loss
if c.run_eval:
target_loss = val_loss
@ -603,27 +637,23 @@ if __name__ == '__main__':
type=str,
help='Path to config file for training.',
)
parser.add_argument(
'--debug',
type=bool,
default=True,
help='Do not verify commit integrity to run training.')
parser.add_argument('--debug',
type=bool,
default=True,
help='Do not verify commit integrity to run training.')
parser.add_argument(
'--data_path',
type=str,
default='',
help='Defines the data path. It overwrites config.json.')
parser.add_argument(
'--output_path',
type=str,
help='path for training outputs.',
default='')
parser.add_argument(
'--output_folder',
type=str,
default='',
help='folder name for training outputs.'
)
parser.add_argument('--output_path',
type=str,
help='path for training outputs.',
default='')
parser.add_argument('--output_folder',
type=str,
default='',
help='folder name for training outputs.')
# DISTRUBUTED
parser.add_argument(
@ -631,11 +661,10 @@ if __name__ == '__main__':
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument(
'--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
# setup output paths and read configs
@ -662,8 +691,8 @@ if __name__ == '__main__':
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_config_file(args.config_path, os.path.join(
OUT_PATH, 'config.json'), new_fields)
copy_config_file(args.config_path,
os.path.join(OUT_PATH, 'config.json'), new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)