Add Inference test using TTS API in all models unit tests

This commit is contained in:
Edresson Casanova 2022-02-18 21:06:08 +00:00
parent 5cca4aa8ae
commit fc7081fc5e
16 changed files with 159 additions and 6 deletions

Binary file not shown.

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.align_tts_config import AlignTTSConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -47,6 +48,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -5,6 +5,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_fast_pitch_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -63,6 +64,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -5,6 +5,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_fast_pitch_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -62,6 +63,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -54,6 +54,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = config.d_vector_file
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -51,6 +51,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -49,6 +50,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -47,6 +48,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -52,6 +53,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = config.d_vector_file
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -49,6 +50,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -47,6 +48,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron_config import TacotronConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -48,6 +49,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -5,6 +5,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -34,7 +35,7 @@ config = VitsConfig(
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=True,
phoneme_language="en-us",
phoneme_language="en",
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
run_eval=True,
test_delay_epochs=-1,
@ -82,6 +83,18 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech"
languae_id = "en"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
continue_languages_path = os.path.join(continue_path, "language_ids.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -5,13 +5,14 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
dataset_config_en = BaseDatasetConfig(
name="ljspeech",
name="ljspeech_test",
meta_file_train="metadata.csv",
meta_file_val="metadata.csv",
path="tests/data/ljspeech",
@ -19,7 +20,7 @@ dataset_config_en = BaseDatasetConfig(
)
dataset_config_pt = BaseDatasetConfig(
name="ljspeech",
name="ljspeech_test",
meta_file_train="metadata.csv",
meta_file_val="metadata.csv",
path="tests/data/ljspeech",
@ -31,7 +32,7 @@ config = VitsConfig(
eval_batch_size=2,
num_loader_workers=0,
num_eval_loader_workers=0,
text_cleaner="english_cleaners",
text_cleaner="multilingual_cleaners",
use_phonemes=False,
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
run_eval=True,
@ -85,6 +86,18 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
languae_id = "en"
continue_speakers_path = config.d_vector_file
continue_languages_path = os.path.join(continue_path, "language_ids.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -25,7 +26,7 @@ config = VitsConfig(
print_step=1,
print_eval=True,
test_sentences=[
["Be a voice, not an echo.", "ljspeech"],
["Be a voice, not an echo.", "ljspeech-1"],
],
)
# set audio config
@ -45,7 +46,7 @@ config.save_json(config_path)
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
f"--coqpit.output_path {output_path} "
"--coqpit.datasets.0.name ljspeech "
"--coqpit.datasets.0.name ljspeech_test "
"--coqpit.datasets.0.meta_file_train metadata.csv "
"--coqpit.datasets.0.meta_file_val metadata.csv "
"--coqpit.datasets.0.path tests/data/ljspeech "
@ -57,6 +58,16 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)

View File

@ -4,6 +4,7 @@ import shutil
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig
from TTS.utils.trainer_utils import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -48,6 +49,14 @@ run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav')
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)