mirror of https://github.com/coqui-ai/TTS.git
New files
This commit is contained in:
parent
c7c327ab8a
commit
fd18e1cf34
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,86 @@
|
||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class BahdanauAttention(nn.Module):
|
||||||
|
def __init__(self, dim):
|
||||||
|
super(BahdanauAttention, self).__init__()
|
||||||
|
self.query_layer = nn.Linear(dim, dim, bias=False)
|
||||||
|
self.tanh = nn.Tanh()
|
||||||
|
self.v = nn.Linear(dim, 1, bias=False)
|
||||||
|
|
||||||
|
def forward(self, query, processed_memory):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
query: (batch, 1, dim) or (batch, dim)
|
||||||
|
processed_memory: (batch, max_time, dim)
|
||||||
|
"""
|
||||||
|
if query.dim() == 2:
|
||||||
|
# insert time-axis for broadcasting
|
||||||
|
query = query.unsqueeze(1)
|
||||||
|
# (batch, 1, dim)
|
||||||
|
processed_query = self.query_layer(query)
|
||||||
|
|
||||||
|
# (batch, max_time, 1)
|
||||||
|
alignment = self.v(self.tanh(processed_query + processed_memory))
|
||||||
|
|
||||||
|
# (batch, max_time)
|
||||||
|
return alignment.squeeze(-1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_mask_from_lengths(memory, memory_lengths):
|
||||||
|
"""Get mask tensor from list of length
|
||||||
|
|
||||||
|
Args:
|
||||||
|
memory: (batch, max_time, dim)
|
||||||
|
memory_lengths: array like
|
||||||
|
"""
|
||||||
|
mask = memory.data.new(memory.size(0), memory.size(1)).byte().zero_()
|
||||||
|
for idx, l in enumerate(memory_lengths):
|
||||||
|
mask[idx][:l] = 1
|
||||||
|
return ~mask
|
||||||
|
|
||||||
|
|
||||||
|
class AttentionWrapper(nn.Module):
|
||||||
|
def __init__(self, rnn_cell, attention_mechanism,
|
||||||
|
score_mask_value=-float("inf")):
|
||||||
|
super(AttentionWrapper, self).__init__()
|
||||||
|
self.rnn_cell = rnn_cell
|
||||||
|
self.attention_mechanism = attention_mechanism
|
||||||
|
self.score_mask_value = score_mask_value
|
||||||
|
|
||||||
|
def forward(self, query, attention, cell_state, memory,
|
||||||
|
processed_memory=None, mask=None, memory_lengths=None):
|
||||||
|
if processed_memory is None:
|
||||||
|
processed_memory = memory
|
||||||
|
if memory_lengths is not None and mask is None:
|
||||||
|
mask = get_mask_from_lengths(memory, memory_lengths)
|
||||||
|
|
||||||
|
# Concat input query and previous attention context
|
||||||
|
cell_input = torch.cat((query, attention), -1)
|
||||||
|
|
||||||
|
# Feed it to RNN
|
||||||
|
cell_output = self.rnn_cell(cell_input, cell_state)
|
||||||
|
|
||||||
|
# Alignment
|
||||||
|
# (batch, max_time)
|
||||||
|
alignment = self.attention_mechanism(cell_output, processed_memory)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.view(query.size(0), -1)
|
||||||
|
alignment.data.masked_fill_(mask, self.score_mask_value)
|
||||||
|
|
||||||
|
# Normalize attention weight
|
||||||
|
alignment = F.softmax(alignment, dim=0)
|
||||||
|
|
||||||
|
# Attention context vector
|
||||||
|
# (batch, 1, dim)
|
||||||
|
attention = torch.bmm(alignment.unsqueeze(1), memory)
|
||||||
|
|
||||||
|
# (batch, dim)
|
||||||
|
attention = attention.squeeze(1)
|
||||||
|
|
||||||
|
return cell_output, attention, alignment
|
||||||
|
|
|
@ -0,0 +1,283 @@
|
||||||
|
# coding: utf-8
|
||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from .attention import BahdanauAttention, AttentionWrapper
|
||||||
|
from .attention import get_mask_from_lengths
|
||||||
|
|
||||||
|
class Prenet(nn.Module):
|
||||||
|
def __init__(self, in_dim, sizes=[256, 128]):
|
||||||
|
super(Prenet, self).__init__()
|
||||||
|
in_sizes = [in_dim] + sizes[:-1]
|
||||||
|
self.layers = nn.ModuleList(
|
||||||
|
[nn.Linear(in_size, out_size)
|
||||||
|
for (in_size, out_size) in zip(in_sizes, sizes)])
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.dropout = nn.Dropout(0.5)
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
for linear in self.layers:
|
||||||
|
inputs = self.dropout(self.relu(linear(inputs)))
|
||||||
|
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
|
||||||
|
class BatchNormConv1d(nn.Module):
|
||||||
|
def __init__(self, in_dim, out_dim, kernel_size, stride, padding,
|
||||||
|
activation=None):
|
||||||
|
super(BatchNormConv1d, self).__init__()
|
||||||
|
self.conv1d = nn.Conv1d(in_dim, out_dim,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=stride, padding=padding, bias=False)
|
||||||
|
# Following tensorflow's default parameters
|
||||||
|
self.bn = nn.BatchNorm1d(out_dim, momentum=0.99, eps=1e-3)
|
||||||
|
self.activation = activation
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.conv1d(x)
|
||||||
|
if self.activation is not None:
|
||||||
|
x = self.activation(x)
|
||||||
|
return self.bn(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Highway(nn.Module):
|
||||||
|
def __init__(self, in_size, out_size):
|
||||||
|
super(Highway, self).__init__()
|
||||||
|
self.H = nn.Linear(in_size, out_size)
|
||||||
|
self.H.bias.data.zero_()
|
||||||
|
self.T = nn.Linear(in_size, out_size)
|
||||||
|
self.T.bias.data.fill_(-1)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.sigmoid = nn.Sigmoid()
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
H = self.relu(self.H(inputs))
|
||||||
|
T = self.sigmoid(self.T(inputs))
|
||||||
|
return H * T + inputs * (1.0 - T)
|
||||||
|
|
||||||
|
|
||||||
|
class CBHG(nn.Module):
|
||||||
|
"""CBHG module: a recurrent neural network composed of:
|
||||||
|
- 1-d convolution banks
|
||||||
|
- Highway networks + residual connections
|
||||||
|
- Bidirectional gated recurrent units
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, in_dim, K=16, projections=[128, 128]):
|
||||||
|
super(CBHG, self).__init__()
|
||||||
|
self.in_dim = in_dim
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.conv1d_banks = nn.ModuleList(
|
||||||
|
[BatchNormConv1d(in_dim, in_dim, kernel_size=k, stride=1,
|
||||||
|
padding=k // 2, activation=self.relu)
|
||||||
|
for k in range(1, K + 1)])
|
||||||
|
self.max_pool1d = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
|
||||||
|
|
||||||
|
in_sizes = [K * in_dim] + projections[:-1]
|
||||||
|
activations = [self.relu] * (len(projections) - 1) + [None]
|
||||||
|
self.conv1d_projections = nn.ModuleList(
|
||||||
|
[BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1,
|
||||||
|
padding=1, activation=ac)
|
||||||
|
for (in_size, out_size, ac) in zip(
|
||||||
|
in_sizes, projections, activations)])
|
||||||
|
|
||||||
|
self.pre_highway = nn.Linear(projections[-1], in_dim, bias=False)
|
||||||
|
self.highways = nn.ModuleList(
|
||||||
|
[Highway(in_dim, in_dim) for _ in range(4)])
|
||||||
|
|
||||||
|
self.gru = nn.GRU(
|
||||||
|
in_dim, in_dim, 1, batch_first=True, bidirectional=True)
|
||||||
|
|
||||||
|
def forward(self, inputs, input_lengths=None):
|
||||||
|
# (B, T_in, in_dim)
|
||||||
|
x = inputs
|
||||||
|
|
||||||
|
# Needed to perform conv1d on time-axis
|
||||||
|
# (B, in_dim, T_in)
|
||||||
|
if x.size(-1) == self.in_dim:
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
|
||||||
|
T = x.size(-1)
|
||||||
|
|
||||||
|
# (B, in_dim*K, T_in)
|
||||||
|
# Concat conv1d bank outputs
|
||||||
|
x = torch.cat([conv1d(x)[:, :, :T] for conv1d in self.conv1d_banks], dim=1)
|
||||||
|
assert x.size(1) == self.in_dim * len(self.conv1d_banks)
|
||||||
|
x = self.max_pool1d(x)[:, :, :T]
|
||||||
|
|
||||||
|
for conv1d in self.conv1d_projections:
|
||||||
|
x = conv1d(x)
|
||||||
|
|
||||||
|
# (B, T_in, in_dim)
|
||||||
|
# Back to the original shape
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
|
||||||
|
if x.size(-1) != self.in_dim:
|
||||||
|
x = self.pre_highway(x)
|
||||||
|
|
||||||
|
# Residual connection
|
||||||
|
x += inputs
|
||||||
|
for highway in self.highways:
|
||||||
|
x = highway(x)
|
||||||
|
|
||||||
|
if input_lengths is not None:
|
||||||
|
x = nn.utils.rnn.pack_padded_sequence(
|
||||||
|
x, input_lengths, batch_first=True)
|
||||||
|
|
||||||
|
# (B, T_in, in_dim*2)
|
||||||
|
self.gru.flatten_parameters()
|
||||||
|
outputs, _ = self.gru(x)
|
||||||
|
|
||||||
|
if input_lengths is not None:
|
||||||
|
outputs, _ = nn.utils.rnn.pad_packed_sequence(
|
||||||
|
outputs, batch_first=True)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, in_dim):
|
||||||
|
super(Encoder, self).__init__()
|
||||||
|
self.prenet = Prenet(in_dim, sizes=[256, 128])
|
||||||
|
self.cbhg = CBHG(128, K=16, projections=[128, 128])
|
||||||
|
|
||||||
|
def forward(self, inputs, input_lengths=None):
|
||||||
|
inputs = self.prenet(inputs)
|
||||||
|
return self.cbhg(inputs, input_lengths)
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(self, memory_dim, r):
|
||||||
|
super(Decoder, self).__init__()
|
||||||
|
self.memory_dim = memory_dim
|
||||||
|
self.r = r
|
||||||
|
self.prenet = Prenet(memory_dim * r, sizes=[256, 128])
|
||||||
|
# attetion RNN
|
||||||
|
self.attention_rnn = AttentionWrapper(
|
||||||
|
nn.GRUCell(256 + 128, 256),
|
||||||
|
BahdanauAttention(256)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.memory_layer = nn.Linear(256, 256, bias=False)
|
||||||
|
|
||||||
|
# concat and project context and attention vectors
|
||||||
|
# (prenet_out + attention context) -> output
|
||||||
|
self.project_to_decoder_in = nn.Linear(512, 256)
|
||||||
|
|
||||||
|
# decoder RNNs
|
||||||
|
self.decoder_rnns = nn.ModuleList(
|
||||||
|
[nn.GRUCell(256, 256) for _ in range(2)])
|
||||||
|
|
||||||
|
self.proj_to_mel = nn.Linear(256, memory_dim * r)
|
||||||
|
self.max_decoder_steps = 200
|
||||||
|
|
||||||
|
def forward(self, decoder_inputs, memory=None, memory_lengths=None):
|
||||||
|
"""
|
||||||
|
Decoder forward step.
|
||||||
|
|
||||||
|
If decoder inputs are not given (e.g., at testing time), as noted in
|
||||||
|
Tacotron paper, greedy decoding is adapted.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_inputs: Encoder outputs. (B, T_encoder, dim)
|
||||||
|
memory: Decoder memory. i.e., mel-spectrogram. If None (at eval-time),
|
||||||
|
decoder outputs are used as decoder inputs.
|
||||||
|
memory_lengths: Encoder output (memory) lengths. If not None, used for
|
||||||
|
attention masking.
|
||||||
|
"""
|
||||||
|
B = decoder_inputs.size(0)
|
||||||
|
|
||||||
|
processed_memory = self.memory_layer(decoder_inputs)
|
||||||
|
if memory_lengths is not None:
|
||||||
|
mask = get_mask_from_lengths(processed_memory, memory_lengths)
|
||||||
|
else:
|
||||||
|
mask = None
|
||||||
|
|
||||||
|
# Run greedy decoding if memory is None
|
||||||
|
greedy = memory is None
|
||||||
|
|
||||||
|
if memory is not None:
|
||||||
|
# Grouping multiple frames if necessary
|
||||||
|
if memory.size(-1) == self.memory_dim:
|
||||||
|
memory = memory.view(B, memory.size(1) // self.r, -1)
|
||||||
|
assert memory.size(-1) == self.memory_dim * self.r,\
|
||||||
|
" !! Dimension mismatch {} vs {} * {}".format(memory.size(-1),
|
||||||
|
self.memory_dim, self.r)
|
||||||
|
T_decoder = memory.size(1)
|
||||||
|
|
||||||
|
# go frames - 0 frames tarting the sequence
|
||||||
|
initial_input = Variable(
|
||||||
|
decoder_inputs.data.new(B, self.memory_dim * self.r).zero_())
|
||||||
|
|
||||||
|
# Init decoder states
|
||||||
|
attention_rnn_hidden = Variable(
|
||||||
|
decoder_inputs.data.new(B, 256).zero_())
|
||||||
|
decoder_rnn_hiddens = [Variable(
|
||||||
|
decoder_inputs.data.new(B, 256).zero_())
|
||||||
|
for _ in range(len(self.decoder_rnns))]
|
||||||
|
current_attention = Variable(
|
||||||
|
decoder_inputs.data.new(B, 256).zero_())
|
||||||
|
|
||||||
|
# Time first (T_decoder, B, memory_dim)
|
||||||
|
if memory is not None:
|
||||||
|
memory = memory.transpose(0, 1)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
alignments = []
|
||||||
|
|
||||||
|
t = 0
|
||||||
|
current_input = initial_input
|
||||||
|
while True:
|
||||||
|
if t > 0:
|
||||||
|
current_input = outputs[-1] if greedy else memory[t - 1]
|
||||||
|
# Prenet
|
||||||
|
current_input = self.prenet(current_input)
|
||||||
|
|
||||||
|
# Attention RNN
|
||||||
|
attention_rnn_hidden, current_attention, alignment = self.attention_rnn(
|
||||||
|
current_input, current_attention, attention_rnn_hidden,
|
||||||
|
decoder_inputs, processed_memory=processed_memory, mask=mask)
|
||||||
|
|
||||||
|
# Concat RNN output and attention context vector
|
||||||
|
decoder_input = self.project_to_decoder_in(
|
||||||
|
torch.cat((attention_rnn_hidden, current_attention), -1))
|
||||||
|
|
||||||
|
# Pass through the decoder RNNs
|
||||||
|
for idx in range(len(self.decoder_rnns)):
|
||||||
|
decoder_rnn_hiddens[idx] = self.decoder_rnns[idx](
|
||||||
|
decoder_input, decoder_rnn_hiddens[idx])
|
||||||
|
# Residual connectinon
|
||||||
|
decoder_input = decoder_rnn_hiddens[idx] + decoder_input
|
||||||
|
|
||||||
|
output = decoder_input
|
||||||
|
|
||||||
|
# predict mel vectors from decoder vectors
|
||||||
|
output = self.proj_to_mel(output)
|
||||||
|
|
||||||
|
outputs += [output]
|
||||||
|
alignments += [alignment]
|
||||||
|
|
||||||
|
t += 1
|
||||||
|
|
||||||
|
if greedy:
|
||||||
|
if t > 1 and is_end_of_frames(output):
|
||||||
|
break
|
||||||
|
elif t > self.max_decoder_steps:
|
||||||
|
print("Warning! doesn't seems to be converged")
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if t >= T_decoder:
|
||||||
|
break
|
||||||
|
|
||||||
|
assert greedy or len(outputs) == T_decoder
|
||||||
|
|
||||||
|
# Back to batch first
|
||||||
|
alignments = torch.stack(alignments).transpose(0, 1)
|
||||||
|
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
|
||||||
|
|
||||||
|
return outputs, alignments
|
||||||
|
|
||||||
|
|
||||||
|
def is_end_of_frames(output, eps=0.2):
|
||||||
|
return (output.data <= eps).all()
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,50 @@
|
||||||
|
# coding: utf-8
|
||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch import nn
|
||||||
|
from utils.text.symbols import symbols
|
||||||
|
from Tacotron.layers.tacotron import Prenet, Encoder, Decoder, CBHG
|
||||||
|
|
||||||
|
class Tacotron(nn.Module):
|
||||||
|
def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80,
|
||||||
|
freq_dim=1025, r=5, padding_idx=None,
|
||||||
|
use_memory_mask=False):
|
||||||
|
super(Tacotron, self).__init__()
|
||||||
|
self.mel_dim = mel_dim
|
||||||
|
self.linear_dim = linear_dim
|
||||||
|
self.use_memory_mask = use_memory_mask
|
||||||
|
self.embedding = nn.Embedding(len(symbols), embedding_dim,
|
||||||
|
padding_idx=padding_idx)
|
||||||
|
# Trying smaller std
|
||||||
|
self.embedding.weight.data.normal_(0, 0.3)
|
||||||
|
self.encoder = Encoder(embedding_dim)
|
||||||
|
self.decoder = Decoder(mel_dim, r)
|
||||||
|
|
||||||
|
self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim])
|
||||||
|
self.last_linear = nn.Linear(mel_dim * 2, freq_dim)
|
||||||
|
|
||||||
|
def forward(self, characters, mel_specs=None, input_lengths=None):
|
||||||
|
B = characters.size(0)
|
||||||
|
|
||||||
|
inputs = self.embedding(characters)
|
||||||
|
# (B, T', in_dim)
|
||||||
|
encoder_outputs = self.encoder(inputs, input_lengths)
|
||||||
|
|
||||||
|
if self.use_memory_mask:
|
||||||
|
memory_lengths = input_lengths
|
||||||
|
else:
|
||||||
|
memory_lengths = None
|
||||||
|
# (B, T', mel_dim*r)
|
||||||
|
mel_outputs, alignments = self.decoder(
|
||||||
|
encoder_outputs, mel_specs, memory_lengths=memory_lengths)
|
||||||
|
|
||||||
|
# Post net processing below
|
||||||
|
|
||||||
|
# Reshape
|
||||||
|
# (B, T, mel_dim)
|
||||||
|
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
||||||
|
|
||||||
|
linear_outputs = self.postnet(mel_outputs)
|
||||||
|
linear_outputs = self.last_linear(linear_outputs)
|
||||||
|
|
||||||
|
return mel_outputs, linear_outputs, alignments
|
|
@ -0,0 +1,78 @@
|
||||||
|
#-*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import re
|
||||||
|
from Tacotron.utils.text import cleaners
|
||||||
|
from Tacotron.utils.text.symbols import symbols
|
||||||
|
|
||||||
|
|
||||||
|
# Mappings from symbol to numeric ID and vice versa:
|
||||||
|
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||||
|
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
||||||
|
|
||||||
|
# Regular expression matching text enclosed in curly braces:
|
||||||
|
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||||
|
|
||||||
|
|
||||||
|
def text_to_sequence(text, cleaner_names):
|
||||||
|
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||||
|
|
||||||
|
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
|
||||||
|
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: string to convert to a sequence
|
||||||
|
cleaner_names: names of the cleaner functions to run the text through
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of integers corresponding to the symbols in the text
|
||||||
|
'''
|
||||||
|
sequence = []
|
||||||
|
|
||||||
|
# Check for curly braces and treat their contents as ARPAbet:
|
||||||
|
while len(text):
|
||||||
|
m = _curly_re.match(text)
|
||||||
|
if not m:
|
||||||
|
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
|
||||||
|
break
|
||||||
|
sequence += _symbols_to_sequence(
|
||||||
|
_clean_text(m.group(1), cleaner_names))
|
||||||
|
sequence += _arpabet_to_sequence(m.group(2))
|
||||||
|
text = m.group(3)
|
||||||
|
|
||||||
|
# Append EOS token
|
||||||
|
sequence.append(_symbol_to_id['~'])
|
||||||
|
return sequence
|
||||||
|
|
||||||
|
|
||||||
|
def sequence_to_text(sequence):
|
||||||
|
'''Converts a sequence of IDs back to a string'''
|
||||||
|
result = ''
|
||||||
|
for symbol_id in sequence:
|
||||||
|
if symbol_id in _id_to_symbol:
|
||||||
|
s = _id_to_symbol[symbol_id]
|
||||||
|
# Enclose ARPAbet back in curly braces:
|
||||||
|
if len(s) > 1 and s[0] == '@':
|
||||||
|
s = '{%s}' % s[1:]
|
||||||
|
result += s
|
||||||
|
return result.replace('}{', ' ')
|
||||||
|
|
||||||
|
|
||||||
|
def _clean_text(text, cleaner_names):
|
||||||
|
for name in cleaner_names:
|
||||||
|
cleaner = getattr(cleaners, name)
|
||||||
|
if not cleaner:
|
||||||
|
raise Exception('Unknown cleaner: %s' % name)
|
||||||
|
text = cleaner(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def _symbols_to_sequence(symbols):
|
||||||
|
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
|
||||||
|
|
||||||
|
|
||||||
|
def _arpabet_to_sequence(text):
|
||||||
|
return _symbols_to_sequence(['@' + s for s in text.split()])
|
||||||
|
|
||||||
|
|
||||||
|
def _should_keep_symbol(s):
|
||||||
|
return s in _symbol_to_id and s is not '_' and s is not '~'
|
|
@ -0,0 +1,91 @@
|
||||||
|
#-*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
Cleaners are transformations that run over the input text at both training and eval time.
|
||||||
|
|
||||||
|
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||||
|
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||||
|
1. "english_cleaners" for English text
|
||||||
|
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||||
|
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||||
|
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||||
|
the symbols in symbols.py to match your data).
|
||||||
|
'''
|
||||||
|
|
||||||
|
import re
|
||||||
|
from unidecode import unidecode
|
||||||
|
from .numbers import normalize_numbers
|
||||||
|
|
||||||
|
|
||||||
|
# Regular expression matching whitespace:
|
||||||
|
_whitespace_re = re.compile(r'\s+')
|
||||||
|
|
||||||
|
# List of (regular expression, replacement) pairs for abbreviations:
|
||||||
|
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||||
|
('mrs', 'misess'),
|
||||||
|
('mr', 'mister'),
|
||||||
|
('dr', 'doctor'),
|
||||||
|
('st', 'saint'),
|
||||||
|
('co', 'company'),
|
||||||
|
('jr', 'junior'),
|
||||||
|
('maj', 'major'),
|
||||||
|
('gen', 'general'),
|
||||||
|
('drs', 'doctors'),
|
||||||
|
('rev', 'reverend'),
|
||||||
|
('lt', 'lieutenant'),
|
||||||
|
('hon', 'honorable'),
|
||||||
|
('sgt', 'sergeant'),
|
||||||
|
('capt', 'captain'),
|
||||||
|
('esq', 'esquire'),
|
||||||
|
('ltd', 'limited'),
|
||||||
|
('col', 'colonel'),
|
||||||
|
('ft', 'fort'),
|
||||||
|
]]
|
||||||
|
|
||||||
|
|
||||||
|
def expand_abbreviations(text):
|
||||||
|
for regex, replacement in _abbreviations:
|
||||||
|
text = re.sub(regex, replacement, text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def expand_numbers(text):
|
||||||
|
return normalize_numbers(text)
|
||||||
|
|
||||||
|
|
||||||
|
def lowercase(text):
|
||||||
|
return text.lower()
|
||||||
|
|
||||||
|
|
||||||
|
def collapse_whitespace(text):
|
||||||
|
return re.sub(_whitespace_re, ' ', text)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_ascii(text):
|
||||||
|
return unidecode(text)
|
||||||
|
|
||||||
|
|
||||||
|
def basic_cleaners(text):
|
||||||
|
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
||||||
|
text = lowercase(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def transliteration_cleaners(text):
|
||||||
|
'''Pipeline for non-English text that transliterates to ASCII.'''
|
||||||
|
text = convert_to_ascii(text)
|
||||||
|
text = lowercase(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def english_cleaners(text):
|
||||||
|
'''Pipeline for English text, including number and abbreviation expansion.'''
|
||||||
|
text = convert_to_ascii(text)
|
||||||
|
text = lowercase(text)
|
||||||
|
text = expand_numbers(text)
|
||||||
|
text = expand_abbreviations(text)
|
||||||
|
text = collapse_whitespace(text)
|
||||||
|
return text
|
|
@ -0,0 +1,65 @@
|
||||||
|
#-*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
valid_symbols = [
|
||||||
|
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
|
||||||
|
'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
|
||||||
|
'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
|
||||||
|
'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
|
||||||
|
'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
|
||||||
|
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
|
||||||
|
'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
|
||||||
|
]
|
||||||
|
|
||||||
|
_valid_symbol_set = set(valid_symbols)
|
||||||
|
|
||||||
|
|
||||||
|
class CMUDict:
|
||||||
|
'''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
|
||||||
|
|
||||||
|
def __init__(self, file_or_path, keep_ambiguous=True):
|
||||||
|
if isinstance(file_or_path, str):
|
||||||
|
with open(file_or_path, encoding='latin-1') as f:
|
||||||
|
entries = _parse_cmudict(f)
|
||||||
|
else:
|
||||||
|
entries = _parse_cmudict(file_or_path)
|
||||||
|
if not keep_ambiguous:
|
||||||
|
entries = {word: pron for word,
|
||||||
|
pron in entries.items() if len(pron) == 1}
|
||||||
|
self._entries = entries
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._entries)
|
||||||
|
|
||||||
|
def lookup(self, word):
|
||||||
|
'''Returns list of ARPAbet pronunciations of the given word.'''
|
||||||
|
return self._entries.get(word.upper())
|
||||||
|
|
||||||
|
|
||||||
|
_alt_re = re.compile(r'\([0-9]+\)')
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_cmudict(file):
|
||||||
|
cmudict = {}
|
||||||
|
for line in file:
|
||||||
|
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||||
|
parts = line.split(' ')
|
||||||
|
word = re.sub(_alt_re, '', parts[0])
|
||||||
|
pronunciation = _get_pronunciation(parts[1])
|
||||||
|
if pronunciation:
|
||||||
|
if word in cmudict:
|
||||||
|
cmudict[word].append(pronunciation)
|
||||||
|
else:
|
||||||
|
cmudict[word] = [pronunciation]
|
||||||
|
return cmudict
|
||||||
|
|
||||||
|
|
||||||
|
def _get_pronunciation(s):
|
||||||
|
parts = s.strip().split(' ')
|
||||||
|
for part in parts:
|
||||||
|
if part not in _valid_symbol_set:
|
||||||
|
return None
|
||||||
|
return ' '.join(parts)
|
|
@ -0,0 +1,71 @@
|
||||||
|
#-*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import inflect
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
_inflect = inflect.engine()
|
||||||
|
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
||||||
|
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
||||||
|
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
||||||
|
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
||||||
|
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
||||||
|
_number_re = re.compile(r'[0-9]+')
|
||||||
|
|
||||||
|
|
||||||
|
def _remove_commas(m):
|
||||||
|
return m.group(1).replace(',', '')
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_decimal_point(m):
|
||||||
|
return m.group(1).replace('.', ' point ')
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_dollars(m):
|
||||||
|
match = m.group(1)
|
||||||
|
parts = match.split('.')
|
||||||
|
if len(parts) > 2:
|
||||||
|
return match + ' dollars' # Unexpected format
|
||||||
|
dollars = int(parts[0]) if parts[0] else 0
|
||||||
|
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||||
|
if dollars and cents:
|
||||||
|
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||||
|
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||||
|
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||||
|
elif dollars:
|
||||||
|
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||||
|
return '%s %s' % (dollars, dollar_unit)
|
||||||
|
elif cents:
|
||||||
|
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||||
|
return '%s %s' % (cents, cent_unit)
|
||||||
|
else:
|
||||||
|
return 'zero dollars'
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_ordinal(m):
|
||||||
|
return _inflect.number_to_words(m.group(0))
|
||||||
|
|
||||||
|
|
||||||
|
def _expand_number(m):
|
||||||
|
num = int(m.group(0))
|
||||||
|
if num > 1000 and num < 3000:
|
||||||
|
if num == 2000:
|
||||||
|
return 'two thousand'
|
||||||
|
elif num > 2000 and num < 2010:
|
||||||
|
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
||||||
|
elif num % 100 == 0:
|
||||||
|
return _inflect.number_to_words(num // 100) + ' hundred'
|
||||||
|
else:
|
||||||
|
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||||||
|
else:
|
||||||
|
return _inflect.number_to_words(num, andword='')
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_numbers(text):
|
||||||
|
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||||
|
text = re.sub(_pounds_re, r'\1 pounds', text)
|
||||||
|
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||||
|
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||||
|
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||||
|
text = re.sub(_number_re, _expand_number, text)
|
||||||
|
return text
|
|
@ -0,0 +1,24 @@
|
||||||
|
#-*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
Defines the set of symbols used in text input to the model.
|
||||||
|
|
||||||
|
The default is a set of ASCII characters that works well for English or text that has been run
|
||||||
|
through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details.
|
||||||
|
'''
|
||||||
|
from Tacotron.utils.text import cmudict
|
||||||
|
|
||||||
|
_pad = '_'
|
||||||
|
_eos = '~'
|
||||||
|
_characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? '
|
||||||
|
|
||||||
|
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
|
||||||
|
_arpabet = ['@' + s for s in cmudict.valid_symbols]
|
||||||
|
|
||||||
|
# Export all symbols:
|
||||||
|
symbols = [_pad, _eos] + list(_characters) + _arpabet
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print(symbols)
|
Loading…
Reference in New Issue