config updates

This commit is contained in:
Eren Golge 2019-03-26 15:46:26 +01:00
parent bc51b81aae
commit fdca8402c7
5 changed files with 18 additions and 18 deletions

View File

@ -3,5 +3,5 @@ ls ${SHARED_DIR}/data/
pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1.post2-cp36-cp36m-linux_x86_64.whl
yes | apt-get install espeak
python3 setup.py develop
python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/checkpoint_187000_4378.pth.tar
python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/checkpoint_266000_4400.pth.tar
# python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/

View File

@ -21,7 +21,7 @@
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
},
"distributed":{
@ -29,10 +29,10 @@
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": ["model.decoder.attention_layer"], //set which layers to be reinitialized in finetunning. Only used if --restore_model is provided.
"reinit_layers": [], //set which layers to be reinitialized in finetunning. Only used if --restore_model is provided.
"model": "Tacotron2", // one of the model in models/
"grad_clip": 0.02, // upper limit for gradients for clipping.
"grad_clip": 1, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
@ -44,25 +44,25 @@
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention.
"eval_batch_size":16,
"r": 1, // Number of frames to predict for step.
"wd": 0.000002, // Weight decay weight.
"wd": 0.000001, // Weight decay weight.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
"print_step": 10, // Number of steps to log traning on console.
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"print_step": 100, // Number of steps to log traning on console.
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"batch_group_size": 8, //Number of batches to shuffle after bucketing.
"run_eval": true,
"test_delay_epochs": 100, //Until attention is aligned, testing only wastes computation time.
"data_path": "/media/erogol/data_ssd/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument
"meta_file_train": "metadata_train.csv", // DATASET-RELATED: metafile for training dataloader.
"meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
"dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
"test_delay_epochs": 2, //Until attention is aligned, testing only wastes computation time.
"data_path": "/media/erogol/data_ssd/Data/Nancy/", // DATASET-RELATED: can overwritten from command argument
"meta_file_train": "prompts_train.data", // DATASET-RELATED: metafile for training dataloader.
"meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader.
"dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 1000, // DATASET-RELATED: maximum text length
"max_seq_len": 120, // DATASET-RELATED: maximum text length
"output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs.
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"phoneme_cache_path": "ljspeech_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
"phoneme_cache_path": "nancy_us_phonemes2", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
"text_cleaner": "phoneme_cleaners"

View File

@ -29,7 +29,7 @@
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": ["model.decoder.attention_layer"],
"reinit_layers": [],
"model": "Tacotron2", // one of the model in models/
"grad_clip": 1, // upper limit for gradients for clipping.

View File

@ -125,8 +125,8 @@ class Attention(nn.Module):
self._mask_value = -float("inf")
self.windowing = windowing
if self.windowing:
self.win_back = 1
self.win_front = 3
self.win_back = 3
self.win_front = 6
self.win_idx = None
self.norm = norm

View File

@ -37,7 +37,7 @@ def visualize(alignment, spectrogram_postnet, stop_tokens, text, hop_length, CON
num_plot = 3
label_fontsize = 16
plt.figure(figsize=(16, 48))
plt.figure(figsize=(8, 24))
plt.subplot(num_plot, 1, 1)
plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None)