mirror of https://github.com/coqui-ai/TTS.git
Remove tabs from logging
This commit is contained in:
parent
ed1f6fe702
commit
fddc57b22d
18
train.py
18
train.py
|
@ -150,9 +150,9 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
||||||
# ('grad_norm_st', grad_norm_st.item())])
|
# ('grad_norm_st', grad_norm_st.item())])
|
||||||
|
|
||||||
if current_step % c.print_step == 0:
|
if current_step % c.print_step == 0:
|
||||||
print(" | | > Step:{}\tGlobalStep:{}\tTotalLoss:{:.5f}\tLinearLoss:{:.5f}\tMelLoss:\
|
print(" | | > Step:{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f} MelLoss:\
|
||||||
{:.5f}\tStopLoss:{:.5f}\tGradNorm:{:.5f}\t\
|
{:.5f} StopLoss:{:.5f} GradNorm:{:.5f} \
|
||||||
GradNormST:{:.5f}\tStepTime:{:.2f}".format(num_iter, current_step,
|
GradNormST:{:.5f} StepTime:{:.2f}".format(num_iter, current_step,
|
||||||
loss.item(),
|
loss.item(),
|
||||||
linear_loss.item(),
|
linear_loss.item(),
|
||||||
mel_loss.item(),
|
mel_loss.item(),
|
||||||
|
@ -215,9 +215,9 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
||||||
avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss
|
avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss
|
||||||
|
|
||||||
# print epoch stats
|
# print epoch stats
|
||||||
print(" | | > EPOCH END -- GlobalStep:{}\tAvgTotalLoss:{:.5f}\t\
|
print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} \
|
||||||
AvgLinearLoss:{:.5f}\tAvgMelLoss:{:.5f}\t\
|
AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} \
|
||||||
AvgStopLoss:{:.5f}\tEpochTime:{:.2f}".format(current_step,
|
AvgStopLoss:{:.5f} EpochTime:{:.2f}".format(current_step,
|
||||||
avg_total_loss,
|
avg_total_loss,
|
||||||
avg_linear_loss,
|
avg_linear_loss,
|
||||||
avg_mel_loss,
|
avg_mel_loss,
|
||||||
|
@ -290,8 +290,8 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
||||||
# ('mel_loss', mel_loss.item()),
|
# ('mel_loss', mel_loss.item()),
|
||||||
# ('stop_loss', stop_loss.item())])
|
# ('stop_loss', stop_loss.item())])
|
||||||
if current_step % c.print_step == 0:
|
if current_step % c.print_step == 0:
|
||||||
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
|
print(" | | > TotalLoss: {:.5f} LinearLoss: {:.5f} MelLoss: \
|
||||||
{:.5f}\t StopLoss: {:.5f}\t".format(loss.item(),
|
{:.5f} StopLoss: {:.5f} ".format(loss.item(),
|
||||||
linear_loss.item(),
|
linear_loss.item(),
|
||||||
mel_loss.item(),
|
mel_loss.item(),
|
||||||
stop_loss.item()))
|
stop_loss.item()))
|
||||||
|
@ -434,7 +434,7 @@ def main(args):
|
||||||
train_loss, current_step = train(
|
train_loss, current_step = train(
|
||||||
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
|
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
|
||||||
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
|
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
|
||||||
print(" | > Train Loss: {:.5f}\t Validation Loss: {:.5f}".format(train_loss, val_loss))
|
print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss))
|
||||||
best_loss = save_best_model(model, optimizer, val_loss,
|
best_loss = save_best_model(model, optimizer, val_loss,
|
||||||
best_loss, OUT_PATH,
|
best_loss, OUT_PATH,
|
||||||
current_step, epoch)
|
current_step, epoch)
|
||||||
|
|
Loading…
Reference in New Issue