tacotrongst

This commit is contained in:
Eren Golge 2019-06-05 18:46:28 +02:00
parent 88575edd5a
commit fef3aecc09
2 changed files with 68 additions and 1 deletions

View File

@ -1,6 +1,6 @@
{
"run_name": "mozilla-tacotron-gst",
"run_description": "",
"run_description": "GST with single speaker",
"audio":{
// Audio processing parameters

67
models/tacotrongst.py Normal file
View File

@ -0,0 +1,67 @@
# coding: utf-8
import torch
from torch import nn
from math import sqrt
from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG
from layers.gst_layers import GST
from utils.generic_utils import sequence_mask
class TacotronGST(nn.Module):
def __init__(self,
num_chars,
r=5,
linear_dim=1025,
mel_dim=80,
memory_size=5,
attn_win=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
separate_stopnet=True):
super(TacotronGST, self).__init__()
self.r = r
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.embedding = nn.Embedding(num_chars, 256)
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(256)
self.gst = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=256)
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, separate_stopnet)
self.postnet = PostCBHG(mel_dim)
self.last_linear = nn.Sequential(
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
nn.Sigmoid())
def forward(self, characters, text_lengths, mel_specs):
B = characters.size(0)
mask = sequence_mask(text_lengths).to(characters.device)
inputs = self.embedding(characters)
encoder_outputs = self.encoder(inputs)
gst_outputs = self.gst(mel_specs)
gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1)
encoder_outputs = encoder_outputs + gst_outputs
mel_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, mask)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens
def inference(self, characters):
B = characters.size(0)
inputs = self.embedding(characters)
encoder_outputs = self.encoder(inputs)
mel_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens