Server updates

This commit is contained in:
Eren Golge 2019-04-15 16:13:33 +02:00
parent 800b77eb10
commit ff33604df1
4 changed files with 95 additions and 42 deletions

View File

@ -1,7 +1,12 @@
{
"model_path":"/home/erogol/projects/runs/2579/keep/November-04-2018_06+19PM-TTS-master-_tmp-debug/",
"model_name":"best_model.pth.tar",
"model_config":"config.json",
"tts_path":"/media/erogol/data_ssd/Data/models/ljspeech_models/ljspeech-April-08-2019_07+32PM-8a47b46/", // tts model root folder
"tts_file":"checkpoint_261000.pth.tar", // tts checkpoint file
"tts_config":"config.json", // tts config.json file
"wavernn_lib_path": "/home/erogol/projects/", // Rootpath to wavernn project folder to be important. If this is none, model uses GL for speech synthesis.
"wavernn_path":"/media/erogol/data_ssd/Data/models/wavernn/ljspeech/mold_ljspeech_best_model/", // wavernn model root path
"wavernn_file":"checkpoint_433000.pth.tar", // wavernn checkpoint file name
"wavernn_config":"config.json", // wavernn config file
"is_wavernn_batched":true,
"port": 5002,
"use_cuda": true
}

View File

@ -11,10 +11,7 @@ args = parser.parse_args()
config = load_config(args.config_path)
app = Flask(__name__)
synthesizer = Synthesizer()
synthesizer.load_model(config.model_path, config.model_name,
config.model_config, config.use_cuda)
synthesizer = Synthesizer(config)
@app.route('/')
def index():

View File

@ -1,40 +1,82 @@
import io
import os
import librosa
import torch
import scipy
import sys
import numpy as np
import soundfile as sf
from utils.text import text_to_sequence
from utils.generic_utils import load_config
from utils.audio import AudioProcessor
import torch
from models.tacotron import Tacotron
from matplotlib import pylab as plt
from utils.audio import AudioProcessor
from utils.generic_utils import load_config, setup_model
from utils.text import phoneme_to_sequence, phonemes, symbols, text_to_sequence, sequence_to_phoneme
class Synthesizer(object):
def load_model(self, model_path, model_name, model_config, use_cuda):
model_config = os.path.join(model_path, model_config)
self.model_file = os.path.join(model_path, model_name)
print(" > Loading model ...")
print(" | > model config: ", model_config)
print(" | > model file: ", self.model_file)
config = load_config(model_config)
self.config = config
self.use_cuda = use_cuda
self.ap = AudioProcessor(**config.audio)
self.model = Tacotron(config.embedding_size, self.ap.num_freq, self.ap.num_mels, config.r)
def __init__(self, config):
self.wavernn = None
self.config = config
self.use_cuda = config.use_cuda
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
self.load_tts(self.config.tts_path, self.config.tts_file, self.config.tts_config, config.use_cuda)
if self.config.wavernn_lib_path:
self.load_wavernn(config.wavernn_lib_path, config.wavernn_path, config.wavernn_file, config.wavernn_config, config.use_cuda)
def load_tts(self, model_path, model_file, model_config, use_cuda):
tts_config = os.path.join(model_path, model_config)
self.model_file = os.path.join(model_path, model_file)
print(" > Loading TTS model ...")
print(" | > model config: ", tts_config)
print(" | > model file: ", model_file)
self.tts_config = load_config(tts_config)
self.use_phonemes = self.tts_config.use_phonemes
self.ap = AudioProcessor(**self.tts_config.audio)
if self.use_phonemes:
self.input_size = len(phonemes)
self.input_adapter = lambda sen: phoneme_to_sequence(sen, [self.tts_config.text_cleaner], self.tts_config.phoneme_language, self.tts_config.enable_eos_bos_chars)
else:
self.input_size = len(symbols)
self.input_adapter = lambda sen: text_to_sequence(sen, [self.tts_config.text_cleaner])
self.tts_model = setup_model(self.input_size, self.tts_config)
# load model state
if use_cuda:
cp = torch.load(self.model_file)
else:
cp = torch.load(
self.model_file, map_location=lambda storage, loc: storage)
cp = torch.load(self.model_file, map_location=lambda storage, loc: storage)
# load the model
self.model.load_state_dict(cp['model'])
self.tts_model.load_state_dict(cp['model'])
if use_cuda:
self.model.cuda()
self.model.eval()
self.tts_model.cuda()
self.tts_model.eval()
def load_wavernn(self, lib_path, model_path, model_file, model_config, use_cuda):
sys.path.append(lib_path) # set this if TTS is not installed globally
from WaveRNN.models.wavernn import Model
wavernn_config = os.path.join(model_path, model_config)
model_file = os.path.join(model_path, model_file)
print(" > Loading WaveRNN model ...")
print(" | > model config: ", wavernn_config)
print(" | > model file: ", model_file)
self.wavernn_config = load_config(wavernn_config)
self.wavernn = Model(
rnn_dims=512,
fc_dims=512,
mode=self.wavernn_config.mode,
pad=2,
upsample_factors=self.wavernn_config.upsample_factors, # set this depending on dataset
feat_dims=80,
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=self.ap.hop_length,
sample_rate=self.ap.sample_rate,
).cuda()
check = torch.load(model_file)
self.wavernn.load_state_dict(check['model'])
if use_cuda:
self.wavernn.cuda()
self.wavernn.eval()
def save_wav(self, wav, path):
# wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
@ -42,25 +84,35 @@ class Synthesizer(object):
self.ap.save_wav(wav, path)
def tts(self, text):
text_cleaner = [self.config.text_cleaner]
wavs = []
for sen in text.split('.'):
if len(sen) < 3:
continue
sen = sen.strip()
sen += '.'
print(sen)
sen = sen.strip()
seq = np.array(text_to_sequence(sen, text_cleaner))
seq = np.array(self.input_adapter(sen))
text_hat = sequence_to_phoneme(seq)
print(text_hat)
chars_var = torch.from_numpy(seq).unsqueeze(0).long()
if self.use_cuda:
chars_var = chars_var.cuda()
mel_out, linear_out, alignments, stop_tokens = self.model.forward(
decoder_out, postnet_out, alignments, stop_tokens = self.tts_model.inference(
chars_var)
linear_out = linear_out[0].data.cpu().numpy()
wav = self.ap.inv_spectrogram(linear_out.T)
out = io.BytesIO()
postnet_out = postnet_out[0].data.cpu().numpy()
if self.tts_config.model == "Tacotron":
wav = self.ap.inv_spectrogram(postnet_out.T)
elif self.tts_config.model == "Tacotron2":
if self.wavernn:
wav = self.wavernn.generate(torch.FloatTensor(postnet_out.T).unsqueeze(0).cuda(), batched=self.config.is_wavernn_batched, target=11000, overlap=550)
else:
wav = self.ap.inv_mel_spectrogram(postnet_out.T)
wavs += list(wav)
wavs += [0] * 10000
out = io.BytesIO()
self.save_wav(wavs, out)
return out
return out

View File

@ -56,11 +56,10 @@
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h1 class="mt-5">Mozilla TTS</h1>
<p class="lead">"work-in-progress"</p>
<img class="mt-5" src="https://user-images.githubusercontent.com/1402048/52643646-c2102980-2edd-11e9-8c37-b72f3c89a640.png" alt=></img>
<ul class="list-unstyled">
</ul>
<input id="text" placeholder="Enter text" size=45 type="text" name="text">
<input id="text" placeholder="Type here..." size=45 type="text" name="text">
<button id="speak-button" name="speak">Speak</button><br/><br/>
<audio id="audio" controls autoplay hidden></audio>
<p id="message"></p>