from dataclasses import dataclass, field from typing import Dict, List from TTS.stt.configs.shared_configs import BaseSTTConfig from TTS.stt.models.deep_speech import DeepSpeechArgs @dataclass class DeepSpeechConfig(BaseSTTConfig): """Defines parameters for VITS End2End TTS model. Args: model (str): Model name. Do not change unless you know what you are doing. model_args (VitsArgs): Model architecture arguments. Defaults to `VitsArgs()`. grad_clip (List): Gradient clipping thresholds for each optimizer. Defaults to `[5.0, 5.0]`. lr (float): Initial learning rate. Defaults to 0.0002. lr_scheduler_gen (str): Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to `ExponentialLR`. lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to `ExponentialLR`. lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. scheduler_after_epoch (bool): If true, step the schedulers after each epoch else after each step. Defaults to `False`. optimizer (str): Name of the optimizer to use with both the generator and the discriminator networks. One of the `torch.optim.*`. Defaults to `AdamW`. kl_loss_alpha (float): Loss weight for KL loss. Defaults to 1.0. disc_loss_alpha (float): Loss weight for the discriminator loss. Defaults to 1.0. gen_loss_alpha (float): Loss weight for the generator loss. Defaults to 1.0. feat_loss_alpha (float): Loss weight for the feature matching loss. Defaults to 1.0. mel_loss_alpha (float): Loss weight for the mel loss. Defaults to 45.0. return_wav (bool): If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. compute_linear_spec (bool): If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. sort_by_audio_len (bool): If true, dataloder sorts the data by audio length else sorts by the input text length. Defaults to `True`. min_seq_len (int): Minimum sequnce length to be considered for training. Defaults to `0`. max_seq_len (int): Maximum sequnce length to be considered for training. Defaults to `500000`. r (int): Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. add_blank (bool): If true, a blank token is added in between every character. Defaults to `True`. test_sentences (List[str]): List of sentences to be used for testing. Note: Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. Example: >>> from TTS.stt.configs import DeepSpeechConfig >>> config = DeepSpeechConfig() """ model: str = "deep_speech" # model specific params model_args: DeepSpeechArgs = field(default_factory=DeepSpeechArgs) # optimizer grad_clip: float = 10 lr: float = 0.0001 lr_scheduler: str = "ExponentialLR" lr_scheduler_params: Dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) scheduler_after_epoch: bool = True optimizer: str = "AdamW" optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) # overrides loss_masking: bool = True feature_extractor: str = "MFCC" sort_by_audio_len: bool = True min_seq_len: int = 0 max_seq_len: int = 500000