import argparse import os from argparse import RawTextHelpFormatter import torch from tqdm import tqdm from TTS.config import load_config from TTS.tts.datasets import load_tts_samples from TTS.tts.utils.managers import EmbeddingManager, save_file parser = argparse.ArgumentParser( description="""Compute embedding vectors for each wav file in a dataset.\n\n""" """ Example runs: python TTS/bin/compute_embeddings.py speaker_encoder_model.pth speaker_encoder_config.json dataset_config.json """, formatter_class=RawTextHelpFormatter, ) parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") parser.add_argument("config_path", type=str, help="Path to model config file.") parser.add_argument("config_dataset_path", type=str, help="Path to dataset config file.") parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth") parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None) parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False) parser.add_argument( "--use_predicted_label", type=bool, help="If True and predicted label is available with will use it.", default=False ) args = parser.parse_args() use_cuda = torch.cuda.is_available() and not args.disable_cuda c_dataset = load_config(args.config_dataset_path) meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval) if meta_data_eval is None: wav_files = meta_data_train else: wav_files = meta_data_train + meta_data_eval encoder_manager = EmbeddingManager( encoder_model_path=args.model_path, encoder_config_path=args.config_path, embedding_file_path=args.old_file, use_cuda=use_cuda, ) print("Using CUDA?", use_cuda) class_name_key = encoder_manager.encoder_config.class_name_key # compute speaker embeddings class_mapping = {} for idx, wav_file in enumerate(tqdm(wav_files)): if isinstance(wav_file, dict): class_name = wav_file[class_name_key] if class_name_key in wav_file else None wav_file = wav_file["audio_file"] else: class_name = None wav_file_name = os.path.basename(wav_file) if args.old_file is not None and wav_file_name in encoder_manager.clip_ids: # get the embedding from the old file embedd = encoder_manager.get_embedding_by_clip(wav_file_name) else: # extract the embedding embedd = encoder_manager.compute_embedding_from_clip(wav_file) if args.use_predicted_label: map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None) if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None: embedding = torch.FloatTensor(embedd).unsqueeze(0) if encoder_manager.use_cuda: embedding = embedding.cuda() class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item() class_name = map_classid_to_classname[str(class_id)] else: raise RuntimeError(" [!] use_predicted_label is enable and predicted_labels is not available !!") # create class_mapping if target dataset is defined class_mapping[wav_file_name] = {} class_mapping[wav_file_name]["name"] = class_name class_mapping[wav_file_name]["embedding"] = embedd if args.old_file: # merge the embeddings dict class_mapping = {**encoder_manager.embeddings, **class_mapping} if class_mapping: # save class_mapping if target dataset is defined if ".json" not in args.output_path or ".pth" not in args.output_path: if class_name_key == "speaker_name": mapping_file_path = os.path.join(args.output_path, "speakers.pth") else: mapping_file_path = os.path.join(args.output_path, "emotions.pth") else: mapping_file_path = args.output_path if os.path.dirname(mapping_file_path) != "": os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) save_file(class_mapping, mapping_file_path) print("Embeddings saved at:", mapping_file_path)