{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "import sys\n", "import io\n", "import torch \n", "import time\n", "import numpy as np\n", "from collections import OrderedDict\n", "\n", "%pylab inline\n", "rcParams[\"figure.figsize\"] = (16,5)\n", "sys.path.append('/home/erogol/projects/')\n", "\n", "import librosa\n", "import librosa.display\n", "\n", "from TTS.models.tacotron import Tacotron \n", "from TTS.layers import *\n", "from TTS.utils.data import *\n", "from TTS.utils.audio import AudioProcessor\n", "from TTS.utils.generic_utils import load_config\n", "from TTS.utils.text import text_to_sequence\n", "\n", "import IPython\n", "from IPython.display import Audio\n", "from utils import *" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def tts(model, text, CONFIG, use_cuda, ap, figures=True):\n", " t_1 = time.time()\n", " waveform, alignment, spectrogram = create_speech(model, text, CONFIG, use_cuda, ap) \n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " if figures: \n", " visualize(alignment, spectrogram, CONFIG) \n", " IPython.display.display(Audio(waveform, rate=CONFIG.sample_rate)) \n", " return alignment, spectrogram" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set constants\n", "ROOT_PATH = '/data/shared/erogol_models/April-26-2018_05:55AM-aa32c76'\n", "MODEL_PATH = ROOT_PATH + '/checkpoint_188864.pth.tar'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = ROOT_PATH + '/test/'\n", "CONFIG = load_config(CONFIG_PATH)\n", "use_cuda = False" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# load the model\n", "model = Tacotron(CONFIG.embedding_size, CONFIG.num_freq, CONFIG.num_mels, CONFIG.r)\n", "\n", "# load the audio processor\n", "ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db,\n", " CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.preemphasis,\n", " CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, griffin_lim_iters=80) \n", "\n", "\n", "# load model state\n", "if use_cuda:\n", " cp = torch.load(MODEL_PATH)\n", "else:\n", " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", "\n", "# load the model\n", "model.load_state_dict(cp['model'])\n", "if use_cuda:\n", " model.cuda()\n", "model.eval()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### EXAMPLES FROM TRAINING SET" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_csv('/data/shared/KeithIto/LJSpeech-1.0/metadata_val.csv', delimiter='|')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = df.iloc[175, 1]\n", "print(sentence)\n", "model.decoder.max_decoder_steps = 250\n", "align, spec = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparision with https://mycroft.ai/blog/available-voices/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "sentence = \"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.\"\n", "model.decoder.max_decoder_steps = 250\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"The human voice is the most perfect instrument of all.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"This cake is great. It's so delicious and moist.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison with https://keithito.github.io/audio-samples/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sentence = \"The buses aren't the problem, they actually provide a solution.\"\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }