# coding: utf-8 import torch from torch.autograd import Variable from torch import nn from TTS.utils.text.symbols import symbols from TTS.layers.tacotron import Prenet, Encoder, Decoder, CBHG class Tacotron(nn.Module): def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80, freq_dim=1025, r=5, padding_idx=None, use_memory_mask=False): super(Tacotron, self).__init__() self.mel_dim = mel_dim self.linear_dim = linear_dim self.use_memory_mask = use_memory_mask self.embedding = nn.Embedding(len(symbols), embedding_dim, padding_idx=padding_idx) # Trying smaller std self.embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(embedding_dim) self.decoder = Decoder(mel_dim, r) self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim]) self.last_linear = nn.Linear(mel_dim * 2, freq_dim) def forward(self, characters, mel_specs=None, input_lengths=None): B = characters.size(0) inputs = self.embedding(characters) # (B, T', in_dim) encoder_outputs = self.encoder(inputs, input_lengths) if self.use_memory_mask: memory_lengths = input_lengths else: memory_lengths = None # (B, T', mel_dim*r) mel_outputs, alignments = self.decoder( encoder_outputs, mel_specs, memory_lengths=memory_lengths) # Post net processing below # Reshape # (B, T, mel_dim) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments