# -*- coding: utf-8 -*- # adapted from https://github.com/keithito/tacotron import re from typing import Dict, List import gruut from TTS.tts.utils.text import cleaners from TTS.tts.utils.text.chinese_mandarin.phonemizer import chinese_text_to_phonemes from TTS.tts.utils.text.japanese.phonemizer import japanese_text_to_phonemes from TTS.tts.utils.text.symbols import _bos, _eos, _punctuations, make_symbols, phonemes, symbols # pylint: disable=unnecessary-comprehension # Mappings from symbol to numeric ID and vice versa: _symbol_to_id = {s: i for i, s in enumerate(symbols)} _id_to_symbol = {i: s for i, s in enumerate(symbols)} _phonemes_to_id = {s: i for i, s in enumerate(phonemes)} _id_to_phonemes = {i: s for i, s in enumerate(phonemes)} _symbols = symbols _phonemes = phonemes # Regular expression matching text enclosed in curly braces: _CURLY_RE = re.compile(r"(.*?)\{(.+?)\}(.*)") # Regular expression matching punctuations, ignoring empty space PHONEME_PUNCTUATION_PATTERN = r"[" + _punctuations.replace(" ", "") + "]+" # Table for str.translate to fix gruut/TTS phoneme mismatch GRUUT_TRANS_TABLE = str.maketrans("g", "ɡ") def text2phone(text, language, use_espeak_phonemes=False): """Convert graphemes to phonemes. Parameters: text (str): text to phonemize language (str): language of the text Returns: ph (str): phonemes as a string seperated by "|" ph = "ɪ|g|ˈ|z|æ|m|p|ə|l" """ # TO REVIEW : How to have a good implementation for this? if language == "zh-CN": ph = chinese_text_to_phonemes(text) print(" > Phonemes: {}".format(ph)) return ph if language == "ja-jp": ph = japanese_text_to_phonemes(text) print(" > Phonemes: {}".format(ph)) return ph if gruut.is_language_supported(language): # Use gruut for phonemization phonemizer_args = { "remove_stress": True, "ipa_minor_breaks": False, # don't replace commas/semi-colons with IPA | "ipa_major_breaks": False, # don't replace periods with IPA ‖ } if use_espeak_phonemes: # Use a lexicon/g2p model train on eSpeak IPA instead of gruut IPA. # This is intended for backwards compatibility with TTS<=v0.0.13 # pre-trained models. phonemizer_args["model_prefix"] = "espeak" ph_list = gruut.text_to_phonemes( text, lang=language, return_format="word_phonemes", phonemizer_args=phonemizer_args, ) # Join and re-split to break apart dipthongs, suprasegmentals, etc. ph_words = ["|".join(word_phonemes) for word_phonemes in ph_list] ph = "| ".join(ph_words) # Fix a few phonemes ph = ph.translate(GRUUT_TRANS_TABLE) return ph raise ValueError(f" [!] Language {language} is not supported for phonemization.") def intersperse(sequence, token): result = [token] * (len(sequence) * 2 + 1) result[1::2] = sequence return result def pad_with_eos_bos(phoneme_sequence, tp=None): # pylint: disable=global-statement global _phonemes_to_id, _bos, _eos if tp: _bos = tp["bos"] _eos = tp["eos"] _, _phonemes = make_symbols(**tp) _phonemes_to_id = {s: i for i, s in enumerate(_phonemes)} return [_phonemes_to_id[_bos]] + list(phoneme_sequence) + [_phonemes_to_id[_eos]] def phoneme_to_sequence( text: str, cleaner_names: List[str], language: str, enable_eos_bos: bool = False, custom_symbols: List[str] = None, tp: Dict = None, add_blank: bool = False, use_espeak_phonemes: bool = False, ) -> List[int]: """Converts a string of phonemes to a sequence of IDs. If `custom_symbols` is provided, it will override the default symbols. Args: text (str): string to convert to a sequence cleaner_names (List[str]): names of the cleaner functions to run the text through language (str): text language key for phonemization. enable_eos_bos (bool): whether to append the end-of-sentence and beginning-of-sentence tokens. tp (Dict): dictionary of character parameters to use a custom character set. add_blank (bool): option to add a blank token between each token. use_espeak_phonemes (bool): use espeak based lexicons to convert phonemes to sequenc Returns: List[int]: List of integers corresponding to the symbols in the text """ # pylint: disable=global-statement global _phonemes_to_id, _phonemes if custom_symbols is not None: _phonemes = custom_symbols elif tp: _, _phonemes = make_symbols(**tp) _phonemes_to_id = {s: i for i, s in enumerate(_phonemes)} sequence = [] clean_text = _clean_text(text, cleaner_names) to_phonemes = text2phone(clean_text, language, use_espeak_phonemes=use_espeak_phonemes) if to_phonemes is None: print("!! After phoneme conversion the result is None. -- {} ".format(clean_text)) # iterate by skipping empty strings - NOTE: might be useful to keep it to have a better intonation. for phoneme in filter(None, to_phonemes.split("|")): sequence += _phoneme_to_sequence(phoneme) # Append EOS char if enable_eos_bos: sequence = pad_with_eos_bos(sequence, tp=tp) if add_blank: sequence = intersperse(sequence, len(_phonemes)) # add a blank token (new), whose id number is len(_phonemes) return sequence def sequence_to_phoneme(sequence: List, tp: Dict = None, add_blank=False, custom_symbols: List["str"] = None): # pylint: disable=global-statement """Converts a sequence of IDs back to a string""" global _id_to_phonemes, _phonemes if add_blank: sequence = list(filter(lambda x: x != len(_phonemes), sequence)) result = "" if custom_symbols is not None: _phonemes = custom_symbols elif tp: _, _phonemes = make_symbols(**tp) _id_to_phonemes = {i: s for i, s in enumerate(_phonemes)} for symbol_id in sequence: if symbol_id in _id_to_phonemes: s = _id_to_phonemes[symbol_id] result += s return result.replace("}{", " ") def text_to_sequence( text: str, cleaner_names: List[str], custom_symbols: List[str] = None, tp: Dict = None, add_blank: bool = False ) -> List[int]: """Converts a string of text to a sequence of IDs corresponding to the symbols in the text. If `custom_symbols` is provided, it will override the default symbols. Args: text (str): string to convert to a sequence cleaner_names (List[str]): names of the cleaner functions to run the text through tp (Dict): dictionary of character parameters to use a custom character set. add_blank (bool): option to add a blank token between each token. Returns: List[int]: List of integers corresponding to the symbols in the text """ # pylint: disable=global-statement global _symbol_to_id, _symbols if custom_symbols is not None: _symbols = custom_symbols elif tp: _symbols, _ = make_symbols(**tp) _symbol_to_id = {s: i for i, s in enumerate(_symbols)} sequence = [] # Check for curly braces and treat their contents as ARPAbet: while text: m = _CURLY_RE.match(text) if not m: sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) break sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) sequence += _arpabet_to_sequence(m.group(2)) text = m.group(3) if add_blank: sequence = intersperse(sequence, len(_symbols)) # add a blank token (new), whose id number is len(_symbols) return sequence def sequence_to_text(sequence: List, tp: Dict = None, add_blank=False, custom_symbols: List[str] = None): """Converts a sequence of IDs back to a string""" # pylint: disable=global-statement global _id_to_symbol, _symbols if add_blank: sequence = list(filter(lambda x: x != len(_symbols), sequence)) if custom_symbols is not None: _symbols = custom_symbols _id_to_symbol = {i: s for i, s in enumerate(_symbols)} elif tp: _symbols, _ = make_symbols(**tp) _id_to_symbol = {i: s for i, s in enumerate(_symbols)} result = "" for symbol_id in sequence: if symbol_id in _id_to_symbol: s = _id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == "@": s = "{%s}" % s[1:] result += s return result.replace("}{", " ") def _clean_text(text, cleaner_names): for name in cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception("Unknown cleaner: %s" % name) text = cleaner(text) return text def _symbols_to_sequence(syms): return [_symbol_to_id[s] for s in syms if _should_keep_symbol(s)] def _phoneme_to_sequence(phons): return [_phonemes_to_id[s] for s in list(phons) if _should_keep_phoneme(s)] def _arpabet_to_sequence(text): return _symbols_to_sequence(["@" + s for s in text.split()]) def _should_keep_symbol(s): return s in _symbol_to_id and s not in ["~", "^", "_"] def _should_keep_phoneme(p): return p in _phonemes_to_id and p not in ["~", "^", "_"]