dependencies = ["torch", "gdown", "pysbd", "gruut", "anyascii", "pypinyin", "coqpit", "mecab-python3", "unidic-lite"] import torch from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer def tts(model_name="tts_models/en/ljspeech/tacotron2-DCA", vocoder_name=None, use_cuda=False): """TTS entry point for PyTorch Hub that provides a Synthesizer object to synthesize speech from a give text. Example: >>> synthesizer = torch.hub.load('coqui-ai/TTS', 'tts', source='github') >>> wavs = synthesizer.tts("This is a test! This is also a test!!") wavs - is a list of values of the synthesized speech. Args: model_name (str, optional): One of the model names from .model.json. Defaults to 'tts_models/en/ljspeech/tacotron2-DCA'. vocoder_name (str, optional): One of the model names from .model.json. Defaults to 'vocoder_models/en/ljspeech/multiband-melgan'. pretrained (bool, optional): [description]. Defaults to True. Returns: TTS.utils.synthesizer.Synthesizer: Synthesizer object wrapping both vocoder and tts models. """ manager = ModelManager() model_path, config_path, model_item = manager.download_model(model_name) vocoder_name = model_item["default_vocoder"] if vocoder_name is None else vocoder_name vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) # create synthesizer synt = Synthesizer( tts_checkpoint=model_path, tts_config_path=config_path, vocoder_checkpoint=vocoder_path, vocoder_config=vocoder_config_path, use_cuda=use_cuda, ) return synt if __name__ == "__main__": synthesizer = torch.hub.load("coqui-ai/TTS:dev", "tts", source="github") synthesizer.tts("This is a test!")