import importlib from typing import Dict, List, Tuple import torch from TTS.utils.training import NoamLR def is_apex_available(): return importlib.util.find_spec("apex") is not None def setup_torch_training_env(cudnn_enable: bool, cudnn_benchmark: bool, use_ddp: bool = False) -> Tuple[bool, int]: """Setup PyTorch environment for training. Args: cudnn_enable (bool): Enable/disable CUDNN. cudnn_benchmark (bool): Enable/disable CUDNN benchmarking. Better to set to False if input sequence length is variable between batches. use_ddp (bool): DDP flag. True if DDP is enabled, False otherwise. Returns: Tuple[bool, int]: is cuda on or off and number of GPUs in the environment. """ num_gpus = torch.cuda.device_count() if num_gpus > 1 and not use_ddp: raise RuntimeError( f" [!] {num_gpus} active GPUs. Define the target GPU by `CUDA_VISIBLE_DEVICES`. For multi-gpu training use `TTS/bin/distribute.py`." ) torch.backends.cudnn.enabled = cudnn_enable torch.backends.cudnn.benchmark = cudnn_benchmark torch.manual_seed(54321) use_cuda = torch.cuda.is_available() print(" > Using CUDA: ", use_cuda) print(" > Number of GPUs: ", num_gpus) return use_cuda, num_gpus def get_scheduler( lr_scheduler: str, lr_scheduler_params: Dict, optimizer: torch.optim.Optimizer ) -> torch.optim.lr_scheduler._LRScheduler: # pylint: disable=protected-access """Find, initialize and return a scheduler. Args: lr_scheduler (str): Scheduler name. lr_scheduler_params (Dict): Scheduler parameters. optimizer (torch.optim.Optimizer): Optimizer to pass to the scheduler. Returns: torch.optim.lr_scheduler._LRScheduler: Functional scheduler. """ if lr_scheduler is None: return None if lr_scheduler.lower() == "noamlr": scheduler = NoamLR else: scheduler = getattr(torch.optim.lr_scheduler, lr_scheduler) return scheduler(optimizer, **lr_scheduler_params) def get_optimizer( optimizer_name: str, optimizer_params: dict, lr: float, model: torch.nn.Module = None, parameters: List = None ) -> torch.optim.Optimizer: """Find, initialize and return a optimizer. Args: optimizer_name (str): Optimizer name. optimizer_params (dict): Optimizer parameters. lr (float): Initial learning rate. model (torch.nn.Module): Model to pass to the optimizer. Returns: torch.optim.Optimizer: Functional optimizer. """ if optimizer_name.lower() == "radam": module = importlib.import_module("TTS.utils.radam") optimizer = getattr(module, "RAdam") else: optimizer = getattr(torch.optim, optimizer_name) if model is not None: parameters = model.parameters() return optimizer(parameters, lr=lr, **optimizer_params)