import librosa import numpy as np from scipy import signal _mel_basis = None def save_wav(wav, path): wav *= 32767 / max(0.01, np.max(np.abs(wav))) librosa.output.write_wav(path, wav.astype(np.int16), c.sample_rate) def _linear_to_mel(spectrogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectrogram) def _build_mel_basis(): n_fft = (c.num_freq - 1) * 2 return librosa.filters.mel(c.sample_rate, n_fft, n_mels=c.num_mels) def _normalize(S): return np.clip((S - c.min_level_db) / -c.min_level_db, 0, 1) def _denormalize(S): return (np.clip(S, 0, 1) * -c.min_level_db) + c.min_level_db def _stft_parameters(): n_fft = (c.num_freq - 1) * 2 hop_length = int(c.frame_shift_ms / 1000 * c.sample_rate) win_length = int(c.frame_length_ms / 1000 * c.sample_rate) return n_fft, hop_length, win_length def _amp_to_db(x): return 20 * np.log10(np.maximum(1e-5, x)) def _db_to_amp(x): return np.power(10.0, x * 0.05) def preemphasis(x): return signal.lfilter([1, -c.preemphasis], [1], x) def inv_preemphasis(x): return signal.lfilter([1], [1, -c.preemphasis], x) def spectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(np.abs(D)) - c.ref_level_db return _normalize(S) def inv_spectrogram(spectrogram): '''Converts spectrogram to waveform using librosa''' S = _denormalize(spectrogram) S = _db_to_amp(S + c.ref_level_db) # Convert back to linear # Reconstruct phase return inv_preemphasis(_griffin_lim(S ** c.power)) def _griffin_lim(S): '''librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 ''' angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles) for i in range(c.griffin_lim_iters): angles = np.exp(1j * np.angle(_stft(y))) y = _istft(S_complex * angles) return y def _istft(y): _, hop_length, win_length = _stft_parameters() return librosa.istft(y, hop_length=hop_length, win_length=win_length) def melspectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(_linear_to_mel(np.abs(D))) return _normalize(S) def _stft(y): n_fft, hop_length, win_length = _stft_parameters() return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length) def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8): window_length = int(c.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = _db_to_amp(threshold_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x:x + window_length]) < threshold: return x + hop_length return len(wav)