import numpy as np def _pad_data(x, length, pad_val=0): assert x.ndim == 1 return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val) def prepare_data(inputs, pad_val=0): max_len = max((len(x) for x in inputs)) return np.stack([_pad_data(x, max_len, pad_val) for x in inputs]) def _pad_tensor(x, length): _pad = 0.0 assert x.ndim == 2 x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad) return x def prepare_tensor(inputs, out_steps): max_len = max((x.shape[1] for x in inputs)) remainder = max_len % out_steps pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len return np.stack([_pad_tensor(x, pad_len) for x in inputs]) def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray: """Pad stop target array. Args: x (np.ndarray): Stop target array. length (int): Length after padding. pad_val (int, optional): Padding value. Defaults to 1. Returns: np.ndarray: Padded stop target array. """ assert x.ndim == 1 return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val) def prepare_stop_target(inputs, out_steps): """Pad row vectors with 1.""" max_len = max((x.shape[0] for x in inputs)) remainder = max_len % out_steps pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len return np.stack([_pad_stop_target(x, pad_len) for x in inputs]) def pad_per_step(inputs, pad_len): return np.pad(inputs, [[0, 0], [0, 0], [0, pad_len]], mode="constant", constant_values=0.0)