import os from TTS.config.shared_configs import BaseAudioConfig from TTS.trainer import Trainer, TrainingArgs from TTS.tts.configs import BaseDatasetConfig, Tacotron2Config from TTS.tts.datasets import load_tts_samples from TTS.tts.models.tacotron2 import Tacotron2 from TTS.utils.audio import AudioProcessor # from TTS.tts.datasets.tokenizer import Tokenizer output_path = os.path.dirname(os.path.abspath(__file__)) # init configs dataset_config = BaseDatasetConfig( name="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") ) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=60.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = Tacotron2Config( # This is the config that is saved for the future use audio=audio_config, batch_size=64, eval_batch_size=16, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, ga_alpha=5.0, r=2, attention_type="dynamic_convolution", double_decoder_consistency=True, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=25, print_eval=True, mixed_precision=False, output_path=output_path, datasets=[dataset_config], ) # init audio processor ap = AudioProcessor(**config.audio.to_dict()) # load training samples train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # init model model = Tacotron2(config) # init the trainer and 🚀 trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, ) trainer.fit()