import os import glob import torch import datetime import pickle as pickle_tts from TTS.utils.io import RenamingUnpickler def load_checkpoint(model, checkpoint_path, use_cuda=False, eval=False): try: state = torch.load(checkpoint_path, map_location=torch.device('cpu')) except ModuleNotFoundError: pickle_tts.Unpickler = RenamingUnpickler state = torch.load(checkpoint_path, map_location=torch.device('cpu'), pickle_module=pickle_tts) model.load_state_dict(state['model']) if use_cuda: model.cuda() if eval: model.eval() return model, state def save_model(model, optimizer, scheduler, model_disc, optimizer_disc, scheduler_disc, current_step, epoch, output_path, **kwargs): if hasattr(model, 'module'): model_state = model.module.state_dict() else: model_state = model.state_dict() model_disc_state = model_disc.state_dict()\ if model_disc is not None else None optimizer_state = optimizer.state_dict()\ if optimizer is not None else None optimizer_disc_state = optimizer_disc.state_dict()\ if optimizer_disc is not None else None scheduler_state = scheduler.state_dict()\ if scheduler is not None else None scheduler_disc_state = scheduler_disc.state_dict()\ if scheduler_disc is not None else None state = { 'model': model_state, 'optimizer': optimizer_state, 'scheduler': scheduler_state, 'model_disc': model_disc_state, 'optimizer_disc': optimizer_disc_state, 'scheduler_disc': scheduler_disc_state, 'step': current_step, 'epoch': epoch, 'date': datetime.date.today().strftime("%B %d, %Y"), } state.update(kwargs) torch.save(state, output_path) def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc, scheduler_disc, current_step, epoch, output_folder, **kwargs): file_name = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(output_folder, file_name) print(" > CHECKPOINT : {}".format(checkpoint_path)) save_model(model, optimizer, scheduler, model_disc, optimizer_disc, scheduler_disc, current_step, epoch, checkpoint_path, **kwargs) def save_best_model(current_loss, best_loss, model, optimizer, scheduler, model_disc, optimizer_disc, scheduler_disc, current_step, epoch, out_path, keep_all_best=False, keep_after=10000, **kwargs): if current_loss < best_loss: best_model_name = f'best_model_{current_step}.pth.tar' checkpoint_path = os.path.join(out_path, best_model_name) print(" > BEST MODEL : {}".format(checkpoint_path)) save_model(model, optimizer, scheduler, model_disc, optimizer_disc, scheduler_disc, current_step, epoch, checkpoint_path, model_loss=current_loss, **kwargs) # only delete previous if current is saved successfully if not keep_all_best or (current_step < keep_after): model_names = glob.glob( os.path.join(out_path, 'best_model*.pth.tar')) for model_name in model_names: if os.path.basename(model_name) == best_model_name: continue os.remove(model_name) # create symlink to best model for convinience link_name = 'best_model.pth.tar' link_path = os.path.join(out_path, link_name) if os.path.islink(link_path) or os.path.isfile(link_path): os.remove(link_path) os.symlink(best_model_name, os.path.join(out_path, link_name)) best_loss = current_loss return best_loss