from dataclasses import dataclass, field from typing import List from TTS.tts.configs.shared_configs import BaseTTSConfig from TTS.tts.models.speedy_speech import SpeedySpeechArgs @dataclass class SpeedySpeechConfig(BaseTTSConfig): """Defines parameters for Speedy Speech (feed-forward encoder-decoder) based models. Example: >>> from TTS.tts.configs import SpeedySpeechConfig >>> config = SpeedySpeechConfig() Args: model (str): Model name used for selecting the right model at initialization. Defaults to `speedy_speech`. model_args (Coqpit): Model class arguments. Check `SpeedySpeechArgs` for more details. Defaults to `SpeedySpeechArgs()`. data_dep_init_steps (int): Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses Activation Normalization that pre-computes normalization stats at the beginning and use the same values for the rest. Defaults to 10. use_speaker_embedding (bool): enable / disable using speaker embeddings for multi-speaker models. If set True, the model is in the multi-speaker mode. Defaults to False. use_d_vector_file (bool): enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False. d_vector_file (str): Path to the file including pre-computed speaker embeddings. Defaults to None. noam_schedule (bool): enable / disable the use of Noam LR scheduler. Defaults to False. warmup_steps (int): Number of warm-up steps for the Noam scheduler. Defaults 4000. lr (float): Initial learning rate. Defaults to `1e-3`. wd (float): Weight decay coefficient. Defaults to `1e-7`. ssim_alpha (float): Weight for the SSIM loss. If set <= 0, disables the SSIM loss. Defaults to 1.0. huber_alpha (float): Weight for the duration predictor's loss. Defaults to 1.0. l1_alpha (float): Weight for the L1 spectrogram loss. If set <= 0, disables the L1 loss. Defaults to 1.0. min_seq_len (int): Minimum input sequence length to be used at training. max_seq_len (int): Maximum input sequence length to be used at training. Larger values result in more VRAM usage. """ model: str = "speedy_speech" # model specific params model_args: SpeedySpeechArgs = field(default_factory=SpeedySpeechArgs) # multi-speaker settings use_speaker_embedding: bool = False use_d_vector_file: bool = False d_vector_file: str = False # optimizer parameters optimizer: str = "RAdam" optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6}) lr_scheduler: str = None lr_scheduler_params: dict = None lr: float = 1e-4 grad_clip: float = 5.0 # loss params ssim_alpha: float = 1.0 huber_alpha: float = 1.0 l1_alpha: float = 1.0 # overrides min_seq_len: int = 13 max_seq_len: int = 200 r: int = 1 # DO NOT CHANGE # testing test_sentences: List[str] = field( default_factory=lambda: [ "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", "Be a voice, not an echo.", "I'm sorry Dave. I'm afraid I can't do that.", "This cake is great. It's so delicious and moist.", "Prior to November 22, 1963.", ] )