from math import sqrt
import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from layers.tacotron2 import Encoder, Decoder, Postnet
from utils.generic_utils import sequence_mask


# TODO: match function arguments with tacotron
class Tacotron2(nn.Module):
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 separate_stopnet=True):
        super(Tacotron2, self).__init__()
        self.n_mel_channels = 80
        self.n_frames_per_step = r
        self.embedding = nn.Embedding(num_chars, 512)
        std = sqrt(2.0 / (num_chars + 512))
        val = sqrt(3.0) * std  # uniform bounds for std
        self.embedding.weight.data.uniform_(-val, val)
        if num_speakers > 1:
            self.speaker_embedding = nn.Embedding(num_speakers, 512)
            self.speaker_embedding.weight.data.normal_(0, 0.3)
        self.encoder = Encoder(512)
        self.decoder = Decoder(512, self.n_mel_channels, r, attn_win,
                               attn_norm, prenet_type, prenet_dropout,
                               forward_attn, trans_agent, forward_attn_mask,
                               location_attn, separate_stopnet)
        self.postnet = Postnet(self.n_mel_channels)

    def shape_outputs(self, mel_outputs, mel_outputs_postnet, alignments):
        mel_outputs = mel_outputs.transpose(1, 2)
        mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
        return mel_outputs, mel_outputs_postnet, alignments

    def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None):
        # compute mask for padding
        mask = sequence_mask(text_lengths).to(text.device)
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder(embedded_inputs, text_lengths)
        encoder_outputs = self._add_speaker_embedding(encoder_outputs,
                                                      speaker_ids)
        mel_outputs, stop_tokens, alignments = self.decoder(
            encoder_outputs, mel_specs, mask)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens

    def inference(self, text, speaker_ids=None):
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference(embedded_inputs)
        encoder_outputs = self._add_speaker_embedding(encoder_outputs,
                                                      speaker_ids)
        mel_outputs, stop_tokens, alignments = self.decoder.inference(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens

    def inference_truncated(self, text, speaker_ids=None):
        """
        Preserve model states for continuous inference
        """
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
        encoder_outputs = self._add_speaker_embedding(encoder_outputs,
                                                      speaker_ids)
        mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens

    def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
        if hasattr(self, "speaker_embedding") and speaker_ids is not None:
            speaker_embeddings = self.speaker_embedding(speaker_ids)

            speaker_embeddings.unsqueeze_(1)
            speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
                                                           encoder_outputs.size(1),
                                                           -1)
            encoder_outputs = encoder_outputs + speaker_embeddings
        return encoder_outputs