import importlib import re import numpy as np import torch from matplotlib import pyplot as plt from TTS.tts.utils.visual import plot_spectrogram def interpolate_vocoder_input(scale_factor, spec): """Interpolate spectrogram by the scale factor. It is mainly used to match the sampling rates of the tts and vocoder models. Args: scale_factor (float): scale factor to interpolate the spectrogram spec (np.array): spectrogram to be interpolated Returns: torch.tensor: interpolated spectrogram. """ print(" > before interpolation :", spec.shape) spec = torch.tensor(spec).unsqueeze(0).unsqueeze(0) # pylint: disable=not-callable spec = torch.nn.functional.interpolate( spec, scale_factor=scale_factor, recompute_scale_factor=True, mode="bilinear", align_corners=False ).squeeze(0) print(" > after interpolation :", spec.shape) return spec def plot_results(y_hat, y, ap, global_step, name_prefix): """Plot vocoder model results""" # select an instance from batch y_hat = y_hat[0].squeeze(0).detach().cpu().numpy() y = y[0].squeeze(0).detach().cpu().numpy() spec_fake = ap.melspectrogram(y_hat).T spec_real = ap.melspectrogram(y).T spec_diff = np.abs(spec_fake - spec_real) # plot figure and save it fig_wave = plt.figure() plt.subplot(2, 1, 1) plt.plot(y) plt.title("groundtruth speech") plt.subplot(2, 1, 2) plt.plot(y_hat) plt.title(f"generated speech @ {global_step} steps") plt.tight_layout() plt.close() figures = { name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake), name_prefix + "spectrogram/real": plot_spectrogram(spec_real), name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff), name_prefix + "speech_comparison": fig_wave, } return figures def to_camel(text): text = text.capitalize() return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) def setup_generator(c): print(" > Generator Model: {}".format(c.generator_model)) MyModel = importlib.import_module("TTS.vocoder.models." + c.generator_model.lower()) # this is to preserve the WaveRNN class name (instead of Wavernn) if c.generator_model.lower() == "wavernn": MyModel = getattr(MyModel, "WaveRNN") else: MyModel = getattr(MyModel, to_camel(c.generator_model)) if c.generator_model.lower() in "wavernn": model = MyModel( rnn_dims=c.wavernn_model_params["rnn_dims"], fc_dims=c.wavernn_model_params["fc_dims"], mode=c.mode, mulaw=c.mulaw, pad=c.padding, use_aux_net=c.wavernn_model_params["use_aux_net"], use_upsample_net=c.wavernn_model_params["use_upsample_net"], upsample_factors=c.wavernn_model_params["upsample_factors"], feat_dims=c.audio["num_mels"], compute_dims=c.wavernn_model_params["compute_dims"], res_out_dims=c.wavernn_model_params["res_out_dims"], num_res_blocks=c.wavernn_model_params["num_res_blocks"], hop_length=c.audio["hop_length"], sample_rate=c.audio["sample_rate"], ) elif c.generator_model.lower() in "hifigan_generator": model = MyModel(in_channels=c.audio["num_mels"], out_channels=1, **c.generator_model_params) elif c.generator_model.lower() in "melgan_generator": model = MyModel( in_channels=c.audio["num_mels"], out_channels=1, proj_kernel=7, base_channels=512, upsample_factors=c.generator_model_params["upsample_factors"], res_kernel=3, num_res_blocks=c.generator_model_params["num_res_blocks"], ) elif c.generator_model in "melgan_fb_generator": raise ValueError("melgan_fb_generator is now fullband_melgan_generator") elif c.generator_model.lower() in "multiband_melgan_generator": model = MyModel( in_channels=c.audio["num_mels"], out_channels=4, proj_kernel=7, base_channels=384, upsample_factors=c.generator_model_params["upsample_factors"], res_kernel=3, num_res_blocks=c.generator_model_params["num_res_blocks"], ) elif c.generator_model.lower() in "fullband_melgan_generator": model = MyModel( in_channels=c.audio["num_mels"], out_channels=1, proj_kernel=7, base_channels=512, upsample_factors=c.generator_model_params["upsample_factors"], res_kernel=3, num_res_blocks=c.generator_model_params["num_res_blocks"], ) elif c.generator_model.lower() in "parallel_wavegan_generator": model = MyModel( in_channels=1, out_channels=1, kernel_size=3, num_res_blocks=c.generator_model_params["num_res_blocks"], stacks=c.generator_model_params["stacks"], res_channels=64, gate_channels=128, skip_channels=64, aux_channels=c.audio["num_mels"], dropout=0.0, bias=True, use_weight_norm=True, upsample_factors=c.generator_model_params["upsample_factors"], ) elif c.generator_model.lower() in "wavegrad": model = MyModel( in_channels=c["audio"]["num_mels"], out_channels=1, use_weight_norm=c["model_params"]["use_weight_norm"], x_conv_channels=c["model_params"]["x_conv_channels"], y_conv_channels=c["model_params"]["y_conv_channels"], dblock_out_channels=c["model_params"]["dblock_out_channels"], ublock_out_channels=c["model_params"]["ublock_out_channels"], upsample_factors=c["model_params"]["upsample_factors"], upsample_dilations=c["model_params"]["upsample_dilations"], ) else: raise NotImplementedError(f"Model {c.generator_model} not implemented!") return model def setup_discriminator(c): print(" > Discriminator Model: {}".format(c.discriminator_model)) if "parallel_wavegan" in c.discriminator_model: MyModel = importlib.import_module("TTS.vocoder.models.parallel_wavegan_discriminator") else: MyModel = importlib.import_module("TTS.vocoder.models." + c.discriminator_model.lower()) MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower())) if c.discriminator_model in "hifigan_discriminator": model = MyModel() if c.discriminator_model in "random_window_discriminator": model = MyModel( cond_channels=c.audio["num_mels"], hop_length=c.audio["hop_length"], uncond_disc_donwsample_factors=c.discriminator_model_params["uncond_disc_donwsample_factors"], cond_disc_downsample_factors=c.discriminator_model_params["cond_disc_downsample_factors"], cond_disc_out_channels=c.discriminator_model_params["cond_disc_out_channels"], window_sizes=c.discriminator_model_params["window_sizes"], ) if c.discriminator_model in "melgan_multiscale_discriminator": model = MyModel( in_channels=1, out_channels=1, kernel_sizes=(5, 3), base_channels=c.discriminator_model_params["base_channels"], max_channels=c.discriminator_model_params["max_channels"], downsample_factors=c.discriminator_model_params["downsample_factors"], ) if c.discriminator_model == "residual_parallel_wavegan_discriminator": model = MyModel( in_channels=1, out_channels=1, kernel_size=3, num_layers=c.discriminator_model_params["num_layers"], stacks=c.discriminator_model_params["stacks"], res_channels=64, gate_channels=128, skip_channels=64, dropout=0.0, bias=True, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, ) if c.discriminator_model == "parallel_wavegan_discriminator": model = MyModel( in_channels=1, out_channels=1, kernel_size=3, num_layers=c.discriminator_model_params["num_layers"], conv_channels=64, dilation_factor=1, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, bias=True, ) return model # def check_config(c): # c = None # pass