import torch from torch import nn from .normalization import LayerNorm class DurationPredictor(nn.Module): def __init__(self, in_channels, filter_channels, kernel_size, dropout_p): super().__init__() # class arguments self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.dropout_p = dropout_p # layers self.drop = nn.Dropout(dropout_p) self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_1 = LayerNorm(filter_channels) self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_2 = LayerNorm(filter_channels) # output layer self.proj = nn.Conv1d(filter_channels, 1, 1) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) x = torch.relu(x) x = self.norm_1(x) x = self.drop(x) x = self.conv_2(x * x_mask) x = torch.relu(x) x = self.norm_2(x) x = self.drop(x) x = self.proj(x * x_mask) return x * x_mask